1
|
Wang T, Li K, Bell DM, Zhang J, Cui T, Surdu M, Baltensperger U, Slowik JG, Lamkaddam H, El Haddad I, Prevot ASH. Large contribution of in-cloud production of secondary organic aerosol from biomass burning emissions. NPJ CLIMATE AND ATMOSPHERIC SCIENCE 2024; 7:149. [PMID: 38938472 PMCID: PMC11199137 DOI: 10.1038/s41612-024-00682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
Organic compounds released from wildfires and residential biomass burning play a crucial role in shaping the composition of the atmosphere. The solubility and subsequent reactions of these compounds in the aqueous phase of clouds and fog remain poorly understood. Nevertheless, these compounds have the potential to become an important source of secondary organic aerosol (SOA). In this study, we simulated the aqueous SOA (aqSOA) from residential wood burning emissions under atmospherically relevant conditions of gas-liquid phase partitioning, using a wetted-wall flow reactor (WFR). We analyzed and quantified the specific compounds present in these emissions at a molecular level and determined their solubility in clouds. Our findings reveal that while 1% of organic compounds are fully water-soluble, 19% exhibit moderate solubility and can partition into the aqueous phase in a thick cloud. Furthermore, it is found that the aqSOA generated in our laboratory experiments has a substantial fraction being attributed to the formation of oligomers in the aqueous phase. We also determined an aqSOA yield of 20% from residential wood combustion, which surpasses current estimates based on gas-phase oxidation. These results indicate that in-cloud chemistry of organic gases emitted from wood burning can serve as an efficient pathway to produce organic aerosols, thus potentially influencing climate and air quality.
Collapse
Affiliation(s)
- Tiantian Wang
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Kun Li
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Present Address: Environmental Research Institute, Shandong University, Qingdao, 266237 China
| | - David M. Bell
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Jun Zhang
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Tianqu Cui
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Mihnea Surdu
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Urs Baltensperger
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Jay G. Slowik
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Houssni Lamkaddam
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Imad El Haddad
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Andre S. H. Prevot
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
2
|
Zhang J, Shrivastava M, Ma L, Jiang W, Anastasio C, Zhang Q, Zelenyuk A. Modeling Novel Aqueous Particle and Cloud Chemistry Processes of Biomass Burning Phenols and Their Potential to Form Secondary Organic Aerosols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3776-3786. [PMID: 38346331 DOI: 10.1021/acs.est.3c07762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Phenols emitted from biomass burning contribute significantly to secondary organic aerosol (SOA) formation through the partitioning of semivolatile products formed from gas-phase chemistry and multiphase chemistry in aerosol liquid water and clouds. The aqueous-phase SOA (aqSOA) formed via hydroxyl radical (•OH), singlet molecular oxygen (1O2*), and triplet excited states of organic compounds (3C*), which oxidize dissolved phenols in the aqueous phase, might play a significant role in the evolution of organic aerosol (OA). However, a quantitative and predictive understanding of aqSOA has been challenging. Here, we develop a stand-alone box model to investigate the formation of SOA from gas-phase •OH chemistry and aqSOA formed by the dissolution of phenols followed by their aqueous-phase reactions with •OH, 1O2*, and 3C* in cloud droplets and aerosol liquid water. We investigate four phenolic compounds, i.e., phenol, guaiacol, syringol, and guaiacyl acetone (GA), which represent some of the key potential sources of aqSOA from biomass burning in clouds. For the same initial precursor organic gas that dissolves in aerosol/cloud liquid water and subsequently reacts with aqueous phase oxidants, we predict that the aqSOA formation potential (defined as aqSOA formed per unit dissolved organic gas concentration) of these phenols is higher than that of isoprene-epoxydiol (IEPOX), a well-known aqSOA precursor. Cloud droplets can dissolve a broader range of soluble phenols compared to aqueous aerosols, since the liquid water contents of aerosols are orders of magnitude smaller than cloud droplets. Our simulations suggest that highly soluble and reactive multifunctional phenols like GA would predominantly undergo cloud chemistry within cloud layers, while gas-phase chemistry is likely to be more important for less soluble phenols. But in the absence of clouds, the condensation of low-volatility products from gas-phase oxidation followed by their reversible partitioning to organic aerosols dominates SOA formation, while the SOA formed through aqueous aerosol chemistry increases with relative humidity (RH), approaching 40% of the sum of gas and aqueous aerosol chemistry at 95% RH for GA. Our model developments of biomass-burning phenols and their aqueous chemistry can be readily implemented in regional and global atmospheric chemistry models to investigate the aqueous aerosol and cloud chemistry of biomass-burning organic gases in the atmosphere.
Collapse
Affiliation(s)
- Jie Zhang
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Manish Shrivastava
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Lan Ma
- Department of Land, Air and Water Resources, University of California, Davis, California 95616-8627, United States
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616-5270, United States
| | - Wenqing Jiang
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616-5270, United States
- Department of Environmental Toxicology, University of California, Davis, California 95616-5270, United States
| | - Cort Anastasio
- Department of Land, Air and Water Resources, University of California, Davis, California 95616-8627, United States
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616-5270, United States
| | - Qi Zhang
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616-5270, United States
- Department of Environmental Toxicology, University of California, Davis, California 95616-5270, United States
| | - Alla Zelenyuk
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
3
|
Liang C, Wang S, Hu R, Huang G, Xie J, Zhao B, Li Y, Zhu W, Guo S, Jiang J, Hao J. Molecular tracers, mass spectral tracers and oxidation of organic aerosols emitted from cooking and fossil fuel burning sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161635. [PMID: 36657674 DOI: 10.1016/j.scitotenv.2023.161635] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Secondary organic aerosol (SOA) composes a substantial fraction of atmospheric particles, yet the formation and aging mechanism of SOA remains unclear. Here we investigate the initial oxidation of primary organic aerosol (POA) and further aging of SOA in winter Beijing by using aerosol mass spectrometer (AMS) measurements along with offline molecular tracer analysis. Multilinear engine (ME-2) source apportionment was conducted to capture the characteristic of source-related SOA, and connect them with specific POA. Our results show that urban cooking and fossil fuel burning sources contribute significantly (17 % and 20 %) to total organic aerosol (OA) in winter Beijing. Molecular tracer analysis by two-dimensional gas chromatography-time-of-flight mass spectrometer (GC × GC-ToF-MS) reveals that cooking SOA (CSOA) is produced through both photooxidation and aqueous-phase processing, while less oxidized SOA (LO-SOA) is the photooxidation product of fossil fuel burning OA (FFOA) and may experience aqueous-phase aging to form more-oxidized oxygenated OA (MO-OOA). Furthermore, CHOm/z 69 and CHOm/z 85 are mass spectral tracers indicating the initial photooxidation, while CHO2+ and C2H2O2+ imply further aqueous-phase aging of OA. Tracer analysis indicates that the formation of diketones is involved in the initial photooxidation of POA, while the formation of glyoxal and diacids is involved in the further aqueous-phase aging of SOA.
Collapse
Affiliation(s)
- Chengrui Liang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China.
| | - Ruolan Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Guanghan Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Jinzi Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Bin Zhao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Yuyang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Wenfei Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jingkun Jiang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Jiming Hao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| |
Collapse
|