1
|
Zhong Z, Huang W, Yin Y, Wang S, Chen L, Chen Z, Wang J, Li L, Khalid M, Hu M, Wang Y. Tris(1-chloro-2-propyl) phosphate enhances the adverse effects of biodegradable polylactic acid microplastics on the mussel Mytilus coruscus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124741. [PMID: 39147220 DOI: 10.1016/j.envpol.2024.124741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Microplastics (MPs) and organophosphate flame retardants (OPFRs) have recently become ubiquitous and cumulative pollutants in the oceans. Since OPFRs are added to or adsorbed onto MPs as additives, it is necessary to study the composite contamination of OPFRs and MPs, with less focus on bio-based PLA. Therefore, this study focused on the ecotoxicity of the biodegradable MP polylactic acid (PLA) (5 μm, irregular fragments, 102 and 106 particles/L), and a representative OPFRs tris(1-chloro-2-propyl) phosphate (TCPP, 0.5 and 50 μg/L) at environmental and high concentrations. The mussel Mytilus coruscus was used as a standardised bioindicator for exposure experiments. The focus was on examining oxidative stress (catalase, CAT, superoxide dismutase, SOD, malondialdehyde, MDA), immune responses acid (phosphatase, ACP, alkaline phosphatase, AKP, lysozyme, LZM), neurotoxicity (acetylcholinesterase, AChE), energy metabolism (lactate dehydrogenase, LDH, succinate dehydrogenase, SDH, hexokinase, HK), and physiological indices (absorption efficiency, AE, excretion rate, ER, respiration rate, RR, condition index, CI) after 14 days exposure. The results of significantly increased oxidative stress and immune responses, and significantly disturbed energy metabolism and physiological activities, together with an integrated biomarker response (IBR) analysis, indicate that bio-based PLA MPs and TCPP could cause adverse effects on mussels. Meanwhile, TCPP interacted significantly with PLA, especially at environmental concentrations, resulting in more severe negative impacts on oxidative and immune stress, and neurotoxicity. The more severe adverse effects at environmental concentrations indicate higher ecological risks of PLA, TCPP and their combination in the real marine environment. Our study presents reliable data on the complex effects of bio-based MP PLA, TCPP and their combination on marine organisms and the environment.
Collapse
Affiliation(s)
- Zhen Zhong
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Yiwei Yin
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China
| | - Shixiu Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Liming Chen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhaowen Chen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiacheng Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Li'ang Li
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Mansoor Khalid
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
2
|
Zhong Z, Shang W, Yang P, Wang S, Chen L, Chen Z, Li L, Khalil MF, Hu M, Xu X, Wang Y. Bio-based microplastic polylactic acid exerts the similar toxic effects to traditional petroleum-based microplastic polystyrene in mussels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174386. [PMID: 38960152 DOI: 10.1016/j.scitotenv.2024.174386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Microplastics (MPs) have accumulated in the oceans, causing adverse effects on marine organisms and the environment. Biodegradable polylactic acid (PLA) is considered as an excellent substitute for traditional petroleum-based plastics, but it is difficult to degrade completely and easily become MPs in the marine environment. To test the ecological risk of bio-based PLA, we exposed thick-shelled mussels (Mytilus coruscus) to bio-based PLA and petroleum-based polystyrene (PS) (at 102, 104, and 106 particles/L) for 14 days. The significant increase in enzyme activities related to oxidative stress and immune response showed that mussels were under physiological stress after MP ingestion. While enzyme activities of nerve conduction and energy metabolism were significantly disturbed after exposure. Meanwhile, normal physiological activities in respiration, ingestion and assimilation were also suppressed in association with enzyme changes. The negative effects of PS and PLA in mussels were not differentiated, and further integration analysis of integrated biomarker response (IBR) and principal component analysis (PCA) also showed that PLA would induce adverse effects in mussels and ecological risks as PS, especially at environmental concentrations. Therefore, it is necessary to pay more attention to the environmental and ecological risk of bio-based MP PLA accumulating in the marine environment.
Collapse
Affiliation(s)
- Zhen Zhong
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Wenrui Shang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Peiwen Yang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Shixiu Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Liming Chen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Zhaowen Chen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Li'ang Li
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Muhammad Faisal Khalil
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China.
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China.
| |
Collapse
|
3
|
Liu J, Shang Y, Deng F, Feng Z, Hu M, Wang Y. Nano titanium dioxide alleviates the toxic effects of tris (2-chloropropyl) phosphate on the digestive gland and hemolymph of thick-shell mussel Mytilus coruscus. MARINE POLLUTION BULLETIN 2024; 205:116682. [PMID: 38981190 DOI: 10.1016/j.marpolbul.2024.116682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
In the marine environment, nanoparticles play a role in adsorbing and catalytically degrading organic pollutants, thereby mitigating their toxic effects on aquatic organisms. This study aimed to investigate the impact of nano titanium dioxide (nTiO2) and tris (2-chloropropyl) phosphate (TCPP) on the hemolymph and digestive function of the thick-shell mussel Mytilus coruscus. Mussels were divided into a control group, a group exposed to TCPP alone, a group exposed to a combination of TCPP and 0.5 mg/L nTiO2, and a group exposed to a combination of TCPP and 1 mg/L nTiO2. After 14 days of exposure, oxidative stress responses, including superoxide dismutase (SOD) activity and malondialdehyde (MDA) content, immune defense responses, including acid phosphatase (ACP) and alkaline phosphatase (AKP) activities, and gene expression, including HSP70 expression, were measured in the hemolymph and digestive glands of the mussels. Compared to the control group, mussels solely exposed to 100 μg/L TCPP exhibited a significant reduction in SOD activity in the hemolymph. When TCPP was co-exposed with 0.5 mg/L nTiO2, there were significant increases in MDA content and AKP activity in both the digestive gland and hemolymph compared to the control group. Upon co-exposure of TCPP with 1 mg/L nTiO2, MDA content and AKP activity in the digestive gland significantly decreased, while SOD, ACP, and AKP activity in the hemolymph significantly increased and MDA content significantly decreased, returning to the control group levels. Furthermore, in the combined exposure, HSP70 gene expression significantly decreased as the nTiO2 concentration increased from 0.5 mg/L to 1 mg/L. In summary, TCPP impacted the hemolymph and digestive function of mussels, whereas a concentration of 1 mg/L nTiO2 effectively alleviated the toxic effects of TCPP. This study is crucial for assessing the ecological risks of nanoparticles and emerging organic pollutants in marine environments, and provides new insights into the interaction between nTiO2 and TCPP, as well as the influence of nTiO2 concentration on mitigating TCPP toxicity.
Collapse
Affiliation(s)
- Jiani Liu
- International Research Center for Marine Biosciences, Ministry of Science and Technolgy, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yueyong Shang
- International Research Center for Marine Biosciences, Ministry of Science and Technolgy, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Fujing Deng
- International Research Center for Marine Biosciences, Ministry of Science and Technolgy, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technolgy, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technolgy, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
4
|
Sun B, Hu M, Lan X, Waiho K, Lv X, Xu C, Wang Y. Nano-titanium dioxide exacerbates the harmful effects of perfluorooctanoic acid on the health of mussels. ENVIRONMENT INTERNATIONAL 2024; 187:108681. [PMID: 38663234 DOI: 10.1016/j.envint.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/19/2024]
Abstract
Exposing marine organisms to contemporary contaminants, such as perfluorooctanoic acid (PFOA) and nano-titanium dioxide (nano-TiO2), can induce multifaceted physiological consequences. Our investigation centered on the responses of the mussel, Mytilus coruscus, to these agents. We discerned pronounced disruptions in gill filament connections, pivotal structures for aquatic respiration, suggesting compromised oxygen uptake capabilities. Concurrently, the respiratory rate exhibited a marked decline, indicating a respiratory distress. Furthermore, the mussels' clearance rate, a metric of their filtration efficacy, diminished, suggesting the potential for bioaccumulation of deleterious substances. Notably, the co-exposure of PFOA and nano-TiO2 exhibits interactive effects on the physiological performance of the mussels. The mussels' digestive performance waned in the face of heightened PFOA and nano-TiO2 concentrations, possibly hampering nutrient assimilation and energy accrual. This was mirrored in the noticeable contraction of their energy budget, suggesting long-term growth repercussions. Additionally, the dysregulation of the gut microbiota and the reduction in its diversity further confirm alterations in intestinal homeostasis, subsequently impacting its physiological functions and health. Collectively, these findings underscore the perils posed by escalated PFOA and nano-TiO2 levels to marine mussels, accentuating the need for a deeper understanding of nanoparticle-pollutant synergies in marine ecosystems.
Collapse
Affiliation(s)
- Bingyan Sun
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xukai Lan
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Khor Waiho
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, University Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Xiaohui Lv
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Chaosong Xu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
5
|
Wei S, Xu P, Mao Y, Shi Y, Liu W, Li S, Tu Z, Chen L, Hu M, Wang Y. Differential intestinal effects of water and foodborne exposures of nano-TiO 2 in the mussel Mytilus coruscus under elevated temperature. CHEMOSPHERE 2024; 355:141777. [PMID: 38527634 DOI: 10.1016/j.chemosphere.2024.141777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
With the wide use of nanomaterials in daily life, nano-titanium dioxide (nano-TiO2) presents potential ecological risks to marine ecosystems, which can be exacerbated by ocean warming (OW). However, most previous studies have only centered around waterborne exposure, while there is a scarcity of studies concentrating on the impact of trophic transfer exposure on organisms. We investigated the differences in toxic effects of 100 μg/L nano-TiO2 on mussels via two pathways (waterborne and foodborne) under normal (24 °C) and warming (28 °C) conditions. Single nano-TiO2 exposure (waterborne and foodborne) elevated the superoxide dismutase (SOD) and catalase (CAT) activities as well as the content of glutathione (GSH), indicating activated antioxidatant response in the intestine. However, depressed antioxidant enzymes and accumulated peroxide products (LPO and protein carbonyl content, PCC) demonstrated that warming in combination with nano-TiO2 broke the prooxidant-antioxidant homeostasis of mussels. Our findings also indicated that nano-TiO2 and high temperature exhibited adverse impacts on amylase (AMS), trypsin (PS), and trehalase (THL). Additionally, activated immune function (lysozyme) comes at the cost of energy expenditure of protein (decreased protein concentration). The hydrodynamic diameter of nano-TiO2 at 24 °C (1693-2261 nm) was lower than that at 28 °C (2666-3086 nm). Bioaccumulation results (range from 0.022 to 0.432 μg/g) suggested that foodborne induced higher Ti contents in intestine than waterborne. In general, the combined effects of nano-TiO2 and warming demonstrated a more pronounced extent of interactive effects and severe damage to antioxidant, digestive, and immune parameters in mussel intestine. The toxicological impact of nano-TiO2 was intensified through trophic transfer. The toxic effects of nano-TiO2 are non-negligible and can be exerted together through both water- and foodborne exposure routes, which deserves further investigation.
Collapse
Affiliation(s)
- Shuaishuai Wei
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Peng Xu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yiran Mao
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuntian Shi
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Liu
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, CH-1211, Geneva, Switzerland
| | - Saishuai Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhihan Tu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Liming Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
6
|
Li Z, Li L, Sokolova I, Shang Y, Huang W, Khor W, Fang JKH, Wang Y, Hu M. Effects of elevated temperature and different crystal structures of TiO 2 nanoparticles on the gut microbiota of mussel Mytilus coruscus. MARINE POLLUTION BULLETIN 2024; 199:115979. [PMID: 38171167 DOI: 10.1016/j.marpolbul.2023.115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Coastal habitats are exposed to increasing pressure of nanopollutants commonly combined with warming due to the seasonal temperature cycles and global climate change. To investigate the toxicological effects of TiO2 nanoparticles (TiO2 NPs) and elevated temperature on the intestinal health of the mussels (Mytilus coruscus), the mussels were exposed to 0.1 mg/L TiO2 NPs with different crystal structures for 14 days at 20 °C and 28 °C, respectively. Compared to 20 °C, the agglomeration of TiO2 NPs was more serious at 28 °C. Exposure to TiO2 NPs led to elevated mortality of M. coruscus and modified the intestinal microbial community as shown by 16S rRNA sequence analysis. Exposure to TiO2 NPs changed the relative abundance of Bacteroidetes, Proteobacteria and Firmicutes. The relative abundances of putative mutualistic symbionts Tenericutes and Fusobacteria increased in the gut of M. coruscus exposed to anatase, which have contributed to the lower mortality in this group. LEfSe showed the combined stress of warming and TiO2 NPs increased the risk of M. coruscus being infected with potential pathogenic bacteria. This study emphasizes the toxicity differences between crystal structures of TiO2 NPs, and will provides an important reference for analyzing the physiological and ecological effects of nanomaterial pollution on bivalves under the background of global climate change.
Collapse
Affiliation(s)
- Zhuoqing Li
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Li'ang Li
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Inna Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Yueyong Shang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Waiho Khor
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, University Malaysia Terengganu, Kuala Terengganu, Terengganu 20000, Malaysia
| | - James K H Fang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Lingang Special Area Marine Biomedical Innovation Platform, Shanghai 201306, China.
| |
Collapse
|
7
|
Yu Y, Tian D, Yu Y, Lu L, Shi W, Liu G. Microplastics aggravate the bioaccumulation and corresponding food safety risk of antibiotics in edible bivalves by constraining detoxification-related processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168436. [PMID: 37949129 DOI: 10.1016/j.scitotenv.2023.168436] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/19/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Characterized by a sessile filter-feeding lifestyle, commercial marine bivalves inhabiting pollution-prone coastal areas may accumulate significant amounts of pollutants, such as antibiotic residues, in their soft tissues and thus pose a potential threat to the health of seafood consumers. Microplastics are another type of emerging pollutant that are prevalent in coastal areas and have been reported to interact with common antibiotics such as enrofloxacin (ENR) and trimethoprim (TMP). Nevertheless, little is known about the impacts of MPs on the accumulation and corresponding food safety risk of antibiotics in edible bivalve species. Taking the frequently detected ENR, TMP, and polystyrene (PS)-MPs as representatives, the accumulation of above-mentioned antibiotics in three commercial bivalves with or without the copresence of MPs was assessed. In addition, the corresponding food safety risks of consuming antibiotic-contaminated bivalves were evaluated. Moreover, the impacts of these pollutants on detoxification-related processes were analyzed using the thick-shell mussel as a representative. Our results demonstrated that blood clams (Tegillarca granosa), thick-shell mussels (Mytilus coruscus), and Asiatic hard clams (Meretrix meretrix) accumulated significantly higher amounts of antibiotics in their bodies under antibiotic-MP coexposure scenarios. Although based on the target hazard quotients (THQs) and the margins of exposure (MoEs) obtained, the direct toxic risks of consuming ENR- or TMP-contaminated bivalves were negligible, the TMP residue accumulated in TMP-MP-coexposed mussels did surpass the maximum residue limits (MRLs) of the corresponding National Food Safety Standard of China, suggesting that other forms of potential risks should not be ignored. In addition, it was shown that the detoxification, energy provision, and antioxidant capacities of the thick-shell mussels were significantly hampered by exposure to the pollutants. In general, our data indicate that MPs may aggravate the accumulation and corresponding food safety risk of antibiotics in edible bivalves by disrupting detoxification-related processes, which deserves closer attention.
Collapse
Affiliation(s)
- Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
8
|
Liang J, Abdullah ALB, Wang H, Liu G, Han M. Change in energy-consuming strategy, nucleolar metabolism and physical defense in Macrobrachium rosenbergii after acute and chronic polystyrene nanoparticles exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106711. [PMID: 37783050 DOI: 10.1016/j.aquatox.2023.106711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
The COVID-19 pandemic has further intensified plastic pollution due to the escalated use of single-use gloves and masks, consequently leading to the widespread presence of microplastics (MPs) and nanoplastics (NPs) in major rivers and lakes worldwide. Macrobrachium rosenbergii has become an important experimental subject due to its ecological role and environmental sensitivity. In this study, we sought to comprehend the ramifications of NPs on the widely-distributed freshwater prawn, M rosenbergii, by conducting a detailed analysis of its responses to NPs after both 96 h and 30 days of exposure. The transcriptome analysis revealed 918 differentially expressed unigenes (DEGs) after 30 days of NPs exposure (356 upregulated, 562 downregulated) and 2376 DEGs after 96 h of NPs exposure (1541 upregulated, 835 downregulated). The results of DEGs expression indicated that acute NPs exposure enhanced carbohydrate transport and metabolism, fostering chitin and extracellular matrix processes. In contrast, chronic NPs exposure induced nucleolar stress in M. rosenbergii, impeding ribosome development and mRNA maturation while showing no significant changes in glucose metabolism. Our findings underscore the M. rosenbergii distinct coping mechanisms during acute and chronic NPs exposure, elucidating its vital adaptive strategies. These results contribute to our understanding of the ecological implications of NPs pollution and its impact on aquatic animals.
Collapse
Affiliation(s)
- Ji Liang
- School of Humanities, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | | | - Hong Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guoxing Liu
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
| | - Mingming Han
- Centre for marine and coastal studies, University Sains Malaysia, Minden, Penang 11800, Malaysia.
| |
Collapse
|
9
|
Wang X, Shao S, Zhang T, Zhang Q, Yang D, Zhao J. Effects of exposure to nanoplastics on the gill of mussels Mytilus galloprovincialis: An integrated perspective from multiple biomarkers. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106174. [PMID: 37708618 DOI: 10.1016/j.marenvres.2023.106174] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
The pervasive presence of nanoplastics (NPs) in marine environments poses a threat to marine organisms. Gills, as the organ in direct contact with the environment in marine invertebrates, maybe the first to accumulate NPs. To date, the toxic effects of NPs on the gills of marine invertebrates are still largely unknown. In this study, the response of multiple biomarkers (i.e., total antioxidant capacity, the activity of acetylcholine, ion content and transport enzyme, metabolic enzymes, and lipids content) in mussels Mytilus galloprovincialis exposed to polystyrene nanoplastics (PS-NPs) for 7 days were evaluated. Significant inductions of total antioxidant capacity (T-AOC) and inhibition of acetylcholine (AChE) activity were detected after 7 days of PS-NPs exposure. PS-NPs also triggered significant alteration in ion content (Na+ and K+) and suppressed the activities of the ion transport enzyme (Na+/K+-ATPase). Moreover, we found the activity of metabolic enzymes (succinate dehydrogenase and pyruvate kinase) and lipids content (triacylglycerol and cholesterol) were significantly altered, suggesting the interference of PS-NPs on energy metabolism and lipid metabolism. This investigation provides substantial information to understand the physical responses of invertebrate gills to PS-NPs exposure. Given the crucial ecological roles of invertebrates, the presence of PS-NPs in the marine environment may have far-reaching impacts on population abundance, biodiversity, and stability of the marine ecosystem.
Collapse
Affiliation(s)
- Xin Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shengyuan Shao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Tianyu Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qianqian Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China
| | - Dinglong Yang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China
| | - Jianmin Zhao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China.
| |
Collapse
|
10
|
Chen X, Huang W, Liu C, Song H, Waiho K, Lin D, Fang JKH, Hu M, Kwan KY, Wang Y. Intestinal response of mussels to nano-TiO 2 and pentachlorophenol in the presence of predator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161456. [PMID: 36640886 DOI: 10.1016/j.scitotenv.2023.161456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
With the development of industry, agriculture and intensification of human activities, a large amount of nano-TiO2 dioxide and pentachlorophenol have entered aquatic environment, causing potential impacts on the health of aquatic animals and ecosystems. We investigated the effects of predators, pentachlorophenol (PCP) and nano titanium dioxide (nano-TiO2) on the gut health (microbiota and digestive enzymes) of the thick-shelled mussel Mytilus coruscus. Nano-TiO2, as the photocatalyst for PCP, enhanced to toxic effects of PCP on the intestinal health of mussels, and they made the mussels more vulnerable to the stress from predators. Nano-TiO2 particles with smaller size exerted a larger negative effect on digestive enzymes, whereas the size effect on gut bacteria was insignificant. The presence of every two of the three factors significantly affected the population richness and diversity of gut microbiota. Our findings revealed that the presence of predators, PCP, and nano-TiO2 promoted the proliferation of pathogenic bacteria and inhibited digestive enzyme activity. This research investigated the combined stress on marine mussels caused by nanoparticles and pesticides in the presence of predators and established a theoretical framework for explaining the adaptive mechanisms in gut microbes and the link between digestive enzymes and gut microbiota.
Collapse
Affiliation(s)
- Xiang Chen
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Science, Beibu Gulf University, Qinzhou City, China; International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wei Huang
- Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Chunhua Liu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Hanting Song
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - James K H Fang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Kit Yue Kwan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Science, Beibu Gulf University, Qinzhou City, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|