1
|
Li Y, Awasthi MK, Syed A, Bahkali AH. The measurement and insight of bacterial community structure succession in cyanobacteria biochar co-composting based on basic carbon and nitrogen indices. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123774. [PMID: 39721391 DOI: 10.1016/j.jenvman.2024.123774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/28/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
The effects of cyanobacteria biochar (CB) amendment on microbial community succession (MCS) during pig manure co-composting was evaluated. Conventional composting (T1) and different concentrations of CB co-composting were set up here (T2: 2.5% CB, T3: 5% CB, T4: 7.5% CB, T5: 10% CB, and T6: 20% CB). Core substrate indicators and microbial information were used to gain insight into microbial community succession structure (MCSS) by CB treatments. Low concentrations of CB show higher organic degradation rates (2.4% vs 2.2%; and Y = C ∗(1- e(-k∗x))), while high concentrations increased the content of TKN (T5: 54.40%). An innovative diversity quantization method (pan-γ-diversity T5:42.275, T1: 40.642, and T2: 34.285) was proposed through linear simulation and integration. CB optimized Bacillus and Thermobacillus were key organic degradation genera during succession (collaborate with Caldicoprobacter) and increased the abundance of important nitrogen fixation genera Chelativorans (Day 42: minimun 4.8 times; and Day 72: minimum 1.3 times) and Longispora (Max 10.0%). The existence of bacteria Caldicoprobacter (2.0-9.3%) on mineralization process showed the synergy and co-assembly effects of CB on MCSS. Moreover, mantel test also shows the assembled and cooperation of Firmicutes and Actinobacteria.
Collapse
Affiliation(s)
- Yue Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Cao L, Wang L, Qi Y, Yang S, Gao J, Liu Q, Song L, Hu R, Wang Z, Zhang H. Enhanced effect of ferrous sulfate on nitrogen retention and PBAT degradation during co-composting by combing with biochar-loaded FN1 bacterial composites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123749. [PMID: 39709662 DOI: 10.1016/j.jenvman.2024.123749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/21/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
The treatment of biodegradable plastics through composting has garnered increasing attention. This study aimed to investigate the effects of Biochar FN1 bacteria and ferrous sulfate on nitrogen retention, greenhouse gas emissions, and degradable plastics during composting and to elucidate their synergistic mechanisms on microbial communities. Compared with the control, applying biochar-loaded FN1 bacteria composites combined with Ferrous sulfate (SGC) markedly accelerated organic matter degradation and reduced cumulative CO2 and NH3 emissions. The synergistic interaction between the composites and Ferrous sulfate significantly enhanced NH4+-N levels in the thermophilic phase and NO3--N levels in the cooling phase, ultimately decreasing nitrogen loss by 14.9% (P < 0.05) and increasing the seed germination index (GI) by 22.5% (P < 0.05). Additionally, PBAT plastic degradation was improved by 31.6% (P < 0.05). The SGC treatment also altered the richness and diversity of the bacterial community in both the compost and the PBAT plastic sphere, particularly affecting Sphingobacterium, Pseudomonas, and Flavobacterium at the genus level. Symbiotic network analysis and Redundancy Analysis revealed that these functional degradation bacteria were significantly positively correlated with NO3--N levels and PBAT degradation. Furthermore, structural equation modelling indicated a positive relationship between PBAT degradation rate and composting temperature (r = 0.69, p < 0.05). The findings suggested that Fe2+ not only enhanced the FN1 activity but also promoted PBAT degradation by increasing ·OH content on the PBAT plastic sphere. Overall, the combined use of biochar-loaded FN1 bacteria and Ferrous sulfate effectively supports nitrogen retention and plastic degradation during composting.
Collapse
Affiliation(s)
- Long Cao
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest MinZu University, Lanzhou, 730000, China; Key Laboratory for Utility of Environment-Friendly Composites and Biomass in Universities of Gansu Province, Lanzhou, 730000, China
| | - Linshan Wang
- Key Laboratory for Utility of Environment-Friendly Composites and Biomass in Universities of Gansu Province, Lanzhou, 730000, China
| | - Yanjiao Qi
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest MinZu University, Lanzhou, 730000, China; Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Lanzhou, 730000, China.
| | - Shen Yang
- Key Laboratory for Utility of Environment-Friendly Composites and Biomass in Universities of Gansu Province, Lanzhou, 730000, China
| | - Jiazhi Gao
- Key Laboratory for Utility of Environment-Friendly Composites and Biomass in Universities of Gansu Province, Lanzhou, 730000, China
| | - Qiang Liu
- Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Lanzhou, 730000, China
| | - Lisha Song
- Key Laboratory for Utility of Environment-Friendly Composites and Biomass in Universities of Gansu Province, Lanzhou, 730000, China
| | - Run Hu
- Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Lanzhou, 730000, China
| | - Zifan Wang
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest MinZu University, Lanzhou, 730000, China
| | - Hong Zhang
- Key Laboratory for Utility of Environment-Friendly Composites and Biomass in Universities of Gansu Province, Lanzhou, 730000, China; Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Xiao W, Zhang L. Optimizing green waste composting with iron-based Fenton-like process. BIORESOURCE TECHNOLOGY 2024; 413:131506. [PMID: 39299344 DOI: 10.1016/j.biortech.2024.131506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The presence of refractory lignocellulose presents a significant challenge in green waste (GW) composting. This research applied both a conventional iron-based Fenton-like process (with a Fenton-like reagent composed of 1.0 % Fe3O4 nanoparticles and 1.0 % H2O2) and three modified iron-based Fenton-like processes (with a Fenton-like reagent composed of 1.0 % Fe3O4 nanoparticles and 1.0 % oxalic acid/1.0 % sodium percarbonate/0.5 % Phanerochaete chrysosporium) in GW composting to systematically assess their impacts on lignocellulose degradation during GW composting. The results revealed that iron-based Fenton-like process modified sodium percarbonate exhibited the most significant effects on lignocellulose degradation. Compared with control, degradation rates for lignin, cellulose, and hemicellulose increased by 49.8 %, 39.3 %, and 26.2 % (p < 0.05), respectively. Furthermore, this process enhanced the relative abundance of bacterial communities linked to lignocellulose degradation, particularly Firmicutes and Bacteroidota. These findings offer valuable insights into optimizing GW composting, understanding reactive oxygen species dynamics, and the application of iron-based Fenton-like process.
Collapse
Affiliation(s)
- Wenjing Xiao
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| | - Lu Zhang
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
4
|
Feng X, Qiu M, Zhang L. Construction of lignocellulose-degrading compound microbial inoculum and its effects on green waste composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122502. [PMID: 39293109 DOI: 10.1016/j.jenvman.2024.122502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/21/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
The high content of recalcitrant lignocellulose in green waste (GW) makes composting and degradation challenging. Conventional GW composting typically employs single-strain microbial inoculants (MIs) with limited enzyme production capabilities, resulting in low composting efficiency and suboptimal compost product quality. In this study, Bacillus amyloliquefaciens (J1), Clonostachys rogersoniana (B2), and Streptomyces thermoviolaceus (J3) was utilized to optimize cultivation conditions and strain ratios based on enzyme activity indicators. The aim was to develop a potent three-strain lignocellulose-degrading MIs and test the hypothesis that its performance is superior to that of single-strain and two-strain MIs in terms of lignocellulose degradation and compost maturation. The results indicated that, the optimal treatment was T7, which was inoculated with a three-strain MIs composed of the spore suspensions of J1, B2, and J3 with a volume ratio of 3:3:2. Specifically, compared to the control (without MI), T7 increased the content of particle size between 0.25 and 2.00 mm and humic acid by 17% and 291%, respectively. Furthermore, T7 enhanced the degradation rates of cellulose, hemicellulose, and lignin by 197%, 145%, and 113%, respectively, and increased the activities of laccase, manganese peroxidase, lignin peroxidase, and carboxymethyl cellulase by 605%, 269%, 180%, and 228%, respectively. Additionally, T7 increased the relative abundance of bacteria (e.g. Pseudomonas) and fungi (e.g. Parascedosporium) that facilitated lignocellulose degradation, enhanced the alpha diversity index and promoted the formation of a microbial community structure characterized by prominent dominant species and greater diversity. Remarkably, the inoculation with the three-strain MI yielded high-quality compost within 32 days.
Collapse
Affiliation(s)
- Xueqing Feng
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| | - Ming Qiu
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| | - Lu Zhang
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
5
|
Parab C, Yadav KD. A review on green waste composting, role of additives and composting methods for process acceleration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63473-63500. [PMID: 39495446 DOI: 10.1007/s11356-024-35429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Effective disposal of green waste has been a challenging task faced by urban bodies for a long time. Composting can be an effective method to manage green waste by recovering nutrients that can be used as organic manure. However, there are some limitations to green waste composting, such as a low degradation rate and the requirement for high manpower and space. Many researchers have studied ways to minimize the limitations of green waste composting through different approaches. These include the use of co-composting materials, inoculating agents, and process modifications such as multi-stage composting. In this review, we systematically summarized the physicochemical characteristics of green waste and green waste compost, optimum ratios of additives, and process modifications during the composting of green waste reported in various articles. This review is helpful for early-career researchers and individuals new to the field of green waste composting by providing them with key concepts and recent developments in the field. The study suggests that the sustainable selection of additives or methods for composting green waste should depend on resource availability, climatic conditions, and the characterization of the feedstock.
Collapse
Affiliation(s)
- Chandrashekhar Parab
- Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007, India.
| | - Kunwar D Yadav
- Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007, India
| |
Collapse
|
6
|
Ma L, Zhang L, Feng X. Optimization of Eisenia fetida stocking density for biotransformation during green waste vermicomposting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 187:188-197. [PMID: 39047308 DOI: 10.1016/j.wasman.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/29/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
Appropriate stocking density plays an important role in ensuring the stability and improving the overall efficiency of the vermicomposting system. Although some studies have shown that earthworms can degrade lignocellulosic materials, relatively few studies have been conducted on the effect of earthworm stocking density on the degradation of a single green waste (GW) with high lignocellulosic content. Therefore, this study investigated the degradation effect of earthworms on GW at different stocking densities, and assessed the stability and maturity of the whole vermicomposting by comprehensively analysing the changes in physicochemical and biological properties of earthworms during vermicomposting, and by combining the growth of earthworms with a multi-dimensional assessment of the stability and maturity of the whole vermicomposting. In this study, six stocking densities (CK-T5) were set up, namely, no earthworms, 10, 20, 30, 40, and 50 worms/kg. The results showed that compared with the CK (without earthworms), when there were 30 earthworms per kg of GW (i.e. T3), the total nitrogen, total phosphorus, total potassium, organic matter decomposition, bacterial and fungal numbers, and germination index of earthworm compost products increased by 14 %, 29 %, 32 %, 35 %, 42 %, 94 %, and 125 %, respectively. T3 also enhanced the activities of cellulase and alkaline phosphatase. The results were further supported by principal component analysis. Finally, we conclude that when the stocking density of earthworms is appropriate (T3), it not only favours the growth of earthworms, but also positively affects the physicochemical properties of the vermicomposting process, which in turn significantly improves the biodegradation efficiency of GW.
Collapse
Affiliation(s)
- Li Ma
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| | - Lu Zhang
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| | - Xueqing Feng
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
7
|
Feng X, Zhang L. Composite additives regulate physicochemical and microbiological properties in green waste composting: A comparative study of single-period and multi-period addition modes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121677. [PMID: 38963955 DOI: 10.1016/j.jenvman.2024.121677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/10/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Composting additives can significantly enhance green waste (GW) composting. However, their effectiveness is limited due to the short action duration of a single-period addition. Therefore, this study proposes that multi-period additive modes to prolong the action duration, expedite lignocellulose degradation, reduce composting time, and enhance product quality. This study conducted six treatments (T1-T6), introducing a compound additive (BLP) during the mesophilic (MP) and cooling periods (CP). Each treatment consistently maintained 25% total BLP addition of GW dry weight, with variations only in the BLP distribution in different periods. The composition of BLP consists of Wbiochar: Wlactic acid: Wpond sediment in a ratio of 10:1:40. Specifically, T1 added 25% BLP in CP, T2 added 5% in MP and 20% in CP, T3 added 10% in MP and 15% in CP, T4 added 15% in MP and 10% in CP, T5 added 20% in MP and 5% in CP, and T6 added 25% in MP. In this study, composting temperature, pH value, electrical conductivity, total porosity, the contents of lignin, cellulose, hemicellulose, and nutrient, scanning electron microscopy images, germination index, and the successions of different bacteria and fungi at the phylum and genus levels were detailed. Results showed T4 achieved two thermophilic periods and matured in just 25 days. T4 enhanced lignocellulose degradation rates (lignin: 16-53%, cellulose: 14-23%, hemicellulose: 9-48%) and improved nutrient content. The above results, combined with correlation analysis and structural equation model, indicated that T4 may promote the development of dominant bacteria (Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes) by regulating compost physicochemical properties and facilitate the growth of dominant fungi (Ascomycota and Basidiomycota) by modulating nutrient supply capacity. This ultimately leads to a microbial community structure more conducive to lignocellulose degradation and nutrient preservation. In summary, this study reveals the comprehensive effects of single-period and multi-period addition methods on GW composting, providing a valuable basis for optimizing the use of additives and enhancing the efficiency and quality of GW composting.
Collapse
Affiliation(s)
- Xueqing Feng
- College of Forestry, Beijing Forestry University, Beijing, 100083, PR China.
| | - Lu Zhang
- College of Forestry, Beijing Forestry University, Beijing, 100083, PR China.
| |
Collapse
|
8
|
Wang F, Wang J, He Y, Yan Y, Fu D, Rene ER, Singh RP. Effect of different bulking agents on fed-batch composting and microbial community profile. ENVIRONMENTAL RESEARCH 2024; 249:118449. [PMID: 38354880 DOI: 10.1016/j.envres.2024.118449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
The current study focused on analyzing the effect of different types of bulking agents and other factors on fed-batch composting and the structure of microbial communities. The results indicated that the introduction of bulking agents to fed-batch composting significantly improved composting efficiency as well as compost product quality. In particular, using green waste as a bulking agent, the compost products would achieve good performance in the following indicators: moisture (3.16%), weight loss rate (85.26%), and C/N ratio (13.98). The significant difference in moisture of compost products (p < 0.05) was observed in different sizes of bulking agent (green waste), which was because the voids in green waste significantly affected the capacity of the water to permeate. Meanwhile, controlling the size of green waste at 3-6 mm, the following indicators would show great performance from the compost products: moisture (3.12%), organic matter content (63.93%), and electrical conductivity (EC) (5.37 mS/cm). According to 16S rRNA sequencing, the relative abundance (RA) of thermophilic microbes increased as reactor temperature rose in fed-batch composting, among which Firmicutes, Proteobacteria, Basidiomycota, and Rasamsonia were involved in cellulose and lignocellulose degradation.
Collapse
Affiliation(s)
- Fei Wang
- School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Jingyao Wang
- School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Yuheng He
- School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Yixin Yan
- School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Dafang Fu
- School of Civil Engineering, Southeast University, Nanjing, 211189, China.
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | | |
Collapse
|
9
|
Li S, He L, Shi N, Chen Y, Saeed M, Ni Z, Chen H. Preparing the pure lignin peroxidase and exploring the effects of chemicals on the activity. Prep Biochem Biotechnol 2024; 54:660-667. [PMID: 37843104 DOI: 10.1080/10826068.2023.2268181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Heterogous expression of lignin peroxidase (LiP) from Phanerochaete chrysosporium was performed in by E. coli prokaryotic expression system, and pure LiP was prepared by washing, refolding, and purification. The enzyme activity was measured by the resveratrol oxidation method. The effects of different chemicals on LiP activity were explored by adding different kinds of metal ions, acids/phenols, and surfactants. The optimal pH and temperature are 4.2 and 40 °C. The single-factor screening experiment showed that adding 1 mM Mn2+, 0.1 mM DL-lactic acid, and 2% PEG-4000 had the best promotion effect on the enzyme activity of recombinant LiP, which was 160.61%, 188.46%, and 247.83%, respectively. Further, the synergistic addition of Mn2+ and PEG-4000 achieved the best enzyme activity promotion effect of 277.51%. In addition, the addition of DL-lactic acid alone could promote LiP activity. However, the co-addition of lactic acid with Mn2+ and PEG-4000 contributed only 247.87%, which indicated that the addition of DL-lactic acid had an inhibitory effect when applied synergistically. For the first time, it was found that PEG-4000 increased LiP enzyme activity obviously and had a synergistic effect with Mn2+, serving as a reference for LiP in studies and applications pertaining to lignin breakdown.
Collapse
Affiliation(s)
- Shouzhi Li
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Lu He
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Na Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yanzhen Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Muhammad Saeed
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zhong Ni
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Zhang D, Zhou H, Ding J, Shen Y, Hong Zhang Y, Cheng Q, Zhang Y, Ma S, Feng Q, Xu P. Potential of novel iron 1,3,5-benzene tricarboxylate loaded on biochar to reduce ammonia and nitrous oxide emissions and its associated biological mechanism during composting. BIORESOURCE TECHNOLOGY 2024; 396:130424. [PMID: 38341046 DOI: 10.1016/j.biortech.2024.130424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/21/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
In this study, a novel iron 1,3,5-benzene tricarboxylate loaded on biochar (BC-FeBTC) was developed and applied to kitchen waste composting. The results demonstrated that the emissions of NH3 and N2O were significantly reduced by 57.2% and 37.8%, respectively, compared with those in control group (CK). Microbiological analysis indicated that BC-FeBTC addition altered the diversity and abundance of community structure as well as key functional genes. The nitrification genes of ammonia-oxidizing bacteria were enhanced, thereby promoting nitrification and reducing the emission of NH3. The typical denitrifying bacterium, Pseudomonas, and critical functional genes (nirS, nirK, and nosZ) were significantly inhibited, contributing to reduced N2O emissions. Network analysis further revealed the important influence of BC-FeBTC in nitrogen transformation driven by functional microbes. These findings offer crucial scientific foundation and guidance for the application of novel materials aimed at mitigating nitrogen loss and environmental pollution during composting.
Collapse
Affiliation(s)
- Dongli Zhang
- Academy of Agricultural Planning and Engineering, Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China
| | - Haibin Zhou
- Academy of Agricultural Planning and Engineering, Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China
| | - Jingtao Ding
- Academy of Agricultural Planning and Engineering, Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China
| | - Yujun Shen
- Academy of Agricultural Planning and Engineering, Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China.
| | - Yue Hong Zhang
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang 515200, China
| | - Qiongyi Cheng
- Academy of Agricultural Planning and Engineering, Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China
| | - Yang Zhang
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Shuangshuang Ma
- Academy of Agricultural Planning and Engineering, Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China
| | - Qikun Feng
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Pengxiang Xu
- Academy of Agricultural Planning and Engineering, Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China
| |
Collapse
|
11
|
Wang F, Kang Y, Fu D, Singh RP. Effect evaluation of different green wastes on food waste digestate composting and improvement of operational conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32386-y. [PMID: 38361099 DOI: 10.1007/s11356-024-32386-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
This study attempted to determine the influence of diverse green wastes on food waste digestate composting and the improvement of operational conditions. Various effects of the green wastes (GW), with different types and sizes, initial substrate mixture C/N ratios, compost pile heights, and turning frequencies on the food waste digestate (FWD) composting were examined in the current work. The findings showed that the use of street sweeping green waste (SSGW) as an additive can maintain the thermophilic stage of the FWD composting for 28 days, while the end-product contained the greatest amounts of total phosphorus (TP, 2.29%) and total potassium (TK, 4.61%) and the lowest moisture content (14.8%). Crushed SSGW (20 mm) enabled the FWD composting to maintain the longest thermophilic period (28 days), achieving the highest temperature (70.2 °C) and seed germination index (GI, 100%). Adjusting the initial substrate mixture C/N ratio to 25, compost pile height to 30 cm, and turning frequency to three times a day could enhance the efficiency and improve the fertilizer quality of the co-composting of the FWD and SSGW. This study suggested that co-composting of FWD and SSGW (FWD/SSGW = 2.3, wet weight) is a promising technique for the treatment of municipal solid waste and provided significant theoretical data for the application of composting.
Collapse
Affiliation(s)
- Fei Wang
- School of Civil Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Yangtianrui Kang
- School of Civil Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Dafang Fu
- School of Civil Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Rajendra Prasad Singh
- School of Civil Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| |
Collapse
|
12
|
Lin L, Qin J, Zhang Y, Yin J, Guo G, Khan MA, Liu Y, Liu Q, Wang Q, Chang K, Mašek O, Wang J, Hu S, Ma W, Li X, Gouda SG, Huang Q. Assessing the suitability of municipal sewage sludge and coconut bran as breeding medium for Oryza sativa L. seedlings and developing a standardized substrate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118644. [PMID: 37478717 DOI: 10.1016/j.jenvman.2023.118644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/07/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
The utilization of organic solid waste (OSW) for preparing standardized seedling substrates is a main challenge due to its temporal and spatial variability. This study aims to form models based on data from the literature and validate them through experiments to explore a standardized seedling substrate. The typical OSW in Hainan Province, including municipal sewage sludge (MSS), coconut bran (CB), seaweed mud (SM), and municipal sewage sludge biochar (MSSB), was used as raw material. A series of six mixing ratios was tested, namely: T1 (0% MSS: 90% CB), T2 (10% MSS: 80% CB), T3 (30% MSS: 60% CB), T4 (50% MSS: 40% CB), T5 (70% MSS: 20% CB), and T6 (90% MSS: 0% CB). SM and MSSB were added as amendment materials at 5% (w/w) for each treatment. The physicochemical properties of substrates, agronomic traits of rice seedlings and microbial diversity were analyzed. The results showed that the four kinds of OSW played an active role in providing rich sources of nutrients. The dry weight of the above-ground part was 2.98 times greater in T3 than that of the commercial substrate. Furthermore, the microbial analysis showed a higher abundance of Actinobacteria in T3, representing the stability of the composted products. Finally, the successful fitting of the results with the linear regression models could establish relationship equations between the physicochemical properties of the substrate and the growth characteristics of seedlings. The relevant parameters suitable for the growth of rice seedlings were as follows: pH (6.46-7.01), EC (less than 2.12 mS cm-1), DD (0.13-0.16 g cm-3), and TPS (65.68-82.73%). This study proposed relevant parameters and models for standardization of seedling substrate, which would contribute to ensuring the quality of seedlings and OSW resource utilization.
Collapse
Affiliation(s)
- Linyi Lin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/School of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/ the Academician He Hong's Team Innovation Platform for Academicians of Hainan Province/ Key Laboratory for Environmental Toxicology of Haikou, Haikou, Hainan University, Hainan, 570228, China
| | - Jiemin Qin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/School of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/ the Academician He Hong's Team Innovation Platform for Academicians of Hainan Province/ Key Laboratory for Environmental Toxicology of Haikou, Haikou, Hainan University, Hainan, 570228, China; School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yu Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/School of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/ the Academician He Hong's Team Innovation Platform for Academicians of Hainan Province/ Key Laboratory for Environmental Toxicology of Haikou, Haikou, Hainan University, Hainan, 570228, China
| | - Jiaxin Yin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/School of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/ the Academician He Hong's Team Innovation Platform for Academicians of Hainan Province/ Key Laboratory for Environmental Toxicology of Haikou, Haikou, Hainan University, Hainan, 570228, China
| | - Genmao Guo
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/School of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/ the Academician He Hong's Team Innovation Platform for Academicians of Hainan Province/ Key Laboratory for Environmental Toxicology of Haikou, Haikou, Hainan University, Hainan, 570228, China
| | - Muhammad Amjad Khan
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/School of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/ the Academician He Hong's Team Innovation Platform for Academicians of Hainan Province/ Key Laboratory for Environmental Toxicology of Haikou, Haikou, Hainan University, Hainan, 570228, China
| | - Yin Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/School of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/ the Academician He Hong's Team Innovation Platform for Academicians of Hainan Province/ Key Laboratory for Environmental Toxicology of Haikou, Haikou, Hainan University, Hainan, 570228, China
| | - Quan Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/School of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/ the Academician He Hong's Team Innovation Platform for Academicians of Hainan Province/ Key Laboratory for Environmental Toxicology of Haikou, Haikou, Hainan University, Hainan, 570228, China
| | - Qingqing Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/School of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/ the Academician He Hong's Team Innovation Platform for Academicians of Hainan Province/ Key Laboratory for Environmental Toxicology of Haikou, Haikou, Hainan University, Hainan, 570228, China
| | - Kenlin Chang
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Ondřej Mašek
- UK Biochar Research Centre School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Junfeng Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/School of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/ the Academician He Hong's Team Innovation Platform for Academicians of Hainan Province/ Key Laboratory for Environmental Toxicology of Haikou, Haikou, Hainan University, Hainan, 570228, China
| | - Shan Hu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/School of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/ the Academician He Hong's Team Innovation Platform for Academicians of Hainan Province/ Key Laboratory for Environmental Toxicology of Haikou, Haikou, Hainan University, Hainan, 570228, China
| | - Wenchao Ma
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/School of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/ the Academician He Hong's Team Innovation Platform for Academicians of Hainan Province/ Key Laboratory for Environmental Toxicology of Haikou, Haikou, Hainan University, Hainan, 570228, China
| | - Xiaohui Li
- Hainan Inspection and Detection Center for Modern Agriculture, Haikou, 570100, China
| | - Shaban G Gouda
- Agricultural and Biosystems Engineering Department, Faculty of Agriculture, Benha University, Benha, 13736, Egypt
| | - Qing Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Center for Eco-Environmental Restoration Engineering of Hainan Province/School of Ecology & Environment/State Key Laboratory of Marine Resource Utilization in South China Sea/ the Academician He Hong's Team Innovation Platform for Academicians of Hainan Province/ Key Laboratory for Environmental Toxicology of Haikou, Haikou, Hainan University, Hainan, 570228, China.
| |
Collapse
|
13
|
Liu Y, Zhang Y, Wang M, Wang L, Zheng W, Zeng Q, Wang K. Comparison of the basic processes of aerobic, anaerobic, and aerobic-anaerobic coupling composting of Chinese medicinal herbal residues. BIORESOURCE TECHNOLOGY 2023; 379:128996. [PMID: 37011845 DOI: 10.1016/j.biortech.2023.128996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/18/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Chinese medicinal herbal residues (CMHRs) are waste generated after extracting Chinese medicinal materials, and they can be used as a renewable bioresource. This study aimed to evaluate the potential of aerobic composting (AC), anaerobic digestion (AD), and aerobic-anaerobic coupling composting (AACC) for the treatment of CMHRs. CMHRs were mixed with sheep manure and biochar, and composted separately under AC, AD, and AACC conditions for 42 days. Physicochemical indices, enzyme activities, and bacterial communities were monitored during composting. Results showed that AACC- and AC-treated CMHRs were well-rotted, with the latter exhibiting the lowest C/N ratio and maximal germination index (GI) values. Higher phosphatase and peroxidase activities were detected during the AACC and AC treatments. Better humification was observed under AACC based on the higher catalase activities and lower E4/E6. AC treatment was effective in reducing compost toxicity. This study provides new insights into biomass resource utilisation.
Collapse
Affiliation(s)
- Ying Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Minghuan Wang
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province 510130, China
| | - Lisheng Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Wanting Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Qiannuo Zeng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Kui Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China.
| |
Collapse
|
14
|
Ansari SA, Shakeel A, Sawarkar R, Maddalwar S, Khan D, Singh L. Additive facilitated co-composting of lignocellulosic biomass waste, approach towards minimizing greenhouse gas emissions: An up to date review. ENVIRONMENTAL RESEARCH 2023; 224:115529. [PMID: 36822534 DOI: 10.1016/j.envres.2023.115529] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Although the composting of lignocellulosic biomass is an emerging waste-to-wealth approach towards organic waste management and circular economy, it still has some environmental loopholes that must be addressed to make it more sustainable and reliable. The significant difficulties encountered when composting lignocellulosic waste biomass are consequently discussed in this study, as well as the advances in science that have been achieved throughout time to handle these problems in a sustainable manner. It discusses an important global concern, the emission of greenhouse gases during the composting process which limits its applicability on a broader scale. Furthermore, it discusses in detail, how different organic minerals and biological additives modify the physiochemical and biological characteristics of compost, aiming at developing eco-friendly compost with minimum odor, greenhouse gases emission and an optimum C/N ratio. It brings novel insights by demonstrating the effect of additives on the microbial enzymes and their pathways involved in the degradation of lignocellulosic biomass. This review also highlights the limitations of the application of additives in composting and suggests possible ways to overcome these limitations in the future for the sustainable and eco-friendly management of agricultural waste. The present review concludes that the use of additives in the co-composting of lignocellulosic biomass can be a viable remedy for the ongoing issues with the management of lignocellulosic waste.
Collapse
Affiliation(s)
- Suhel Aneesh Ansari
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Adnan Shakeel
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Riya Sawarkar
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Shrirang Maddalwar
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Debishree Khan
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Lal Singh
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| |
Collapse
|