1
|
Bildirici ME, Ersin ÖÖ. Cement production and CO 2 emission cycles in the USA: evidence from MS-ARDL and MS-VARDL causality methods with century-long data. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35369-35395. [PMID: 38724851 DOI: 10.1007/s11356-024-33489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/22/2024] [Indexed: 05/30/2024]
Abstract
The cement industry is among the top three polluters among all industries and the examination of the nonlinear and cointegration dynamics between cement production and CO2 emissions has not been explored. Focusing on this research gap, the study employs a novel Markov-switching autoregressive distributed lag (MS-ARDL) model and its generalization to vector error correction, the MS-VARDL model, for regime-dependent causality testing. The new method allows the determination of nonlinear long-run and short-run relations, regime duration, and cement-induced-CO2 emission cycles in the USA for a historically long dataset covering 1900-2021. Empirical findings point to nonlinearity in all series and nonlinear cointegration between cement production and cement-induced CO2 emissions. The phases of regimes coincide closely with NBER's official economic cycles for the USA. The second regime, characterized by expansions, lasts twice as long relative to the first, the contractionary regime, which contains severe economic recessions, as well as economic crises, the 1929 Great Depression, the 1973 Oil Crisis, the 2009 Great Recession, and the COVID-19 Shutdown and Wars, including WWI and II. In both regimes, the adverse effects of cement production on CO2 emissions cannot be rejected with varying degrees both in the long and the short run. Markov regime-switching vector autoregressive distributed lag (MS-VARDL) causality tests confirm unidirectional causality from cement production to CO2 emissions in both regimes. The traditional Granger causality test produces an over-acceptance of causality in a discussed set of cases. Industry-level policy recommendations include investments to help with the shift to green kiln technologies and energy efficiency. National-level policies on renewable energy and carbon capture are also vital considering the energy consumption of cement production.
Collapse
Affiliation(s)
- Melike E Bildirici
- Department of Economics, Faculty of Economics and Administrative Sciences, Davutpaşa Campus, Yıldız Technical University, 34220, Istanbul, Turkey
| | - Özgür Ömer Ersin
- Dept. of International Trade, Faculty of Business, Sütlüce Campus, İstanbul Ticaret University, 34445, Istanbul, Turkey.
| |
Collapse
|
2
|
Labidi A, Ren H, Zhu Q, Liang X, Liang J, Wang H, Sial A, Padervand M, Lichtfouse E, Rady A, Allam AA, Wang C. Coal fly ash and bottom ash low-cost feedstocks for CO 2 reduction using the adsorption and catalysis processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169179. [PMID: 38081431 DOI: 10.1016/j.scitotenv.2023.169179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/10/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Combustion of fossil fuels, industry and agriculture sectors are considered as the largest emitters of carbon dioxide. In fact, the emission of CO2 greenhouse gas has been considerably intensified during the last two decades, resulting in global warming and inducing variety of adverse health effects on human and environment. Calling for effective and green feedstocks to remove CO2, low-cost materials such as coal ashes "wastes-to-materials", have been considered among the interesting candidates of CO2 capture technologies. On the other hand, several techniques employing coal ashes as inorganic supports (e.g., catalytic reduction, photocatalysis, gas conversion, ceramic filter, gas scrubbing, adsorption, etc.) have been widely applied to reduce CO2. These processes are among the most efficient solutions utilized by industrialists and scientists to produce clean energy from CO2 and limit its continuous emission into the atmosphere. Herein, we review the recent trends and advancements in the applications of coal ashes including coal fly ash and bottom ash as low-cost wastes to reduce CO2 concentration through adsorption and catalysis processes. The chemical routes of structural modification and characterization of coal ash-based feedstocks are discussed in details. The adsorption and catalytic performance of the coal ashes derivatives towards CO2 selective reduction to CH4 are also described. The main objective of this review is to highlight the excellent capacity of coal fly ash and bottom ash to capture and selective conversion of CO2 to methane, with the aim of minimizing coal ashes disposal and their storage costs. From a practical view of point, the needs of developing new advanced technologies and recycling strategies might be urgent in the near future to efficient make use of coal ashes as new cleaner materials for CO2 remediation purposes, which favourably affects the rate of global warming.
Collapse
Affiliation(s)
- Abdelkader Labidi
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| | - Haitao Ren
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Qiuhui Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - XinXin Liang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Jiangyushan Liang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Hui Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Atif Sial
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Mohsen Padervand
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O Box 55181-83111, Maragheh, Iran
| | - Eric Lichtfouse
- Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE, Aix en Provence 13100, France
| | - Ahmed Rady
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| |
Collapse
|