1
|
Zhao K, Ma R, Cheng M, Guo T, Wu W, Song Y, Xu H, Tan A, Qin B, Wei S. Isolation of Macrolactin A from a new Bacillus amyloliquefaciens and its aphicidal activity against Rhopalosiphum padi. PEST MANAGEMENT SCIENCE 2024. [PMID: 39641233 DOI: 10.1002/ps.8589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Rhopalosiphum padi is a major infection affecting cereal crops in the boundary area. However, continuous use of chemical pesticides has increased cases of drug resistance in its field population. Therefore, we aimed to verify the insecticidal properties of Bacillus amyloliquefaciens YJNbs21.10 against aphids, isolated to determine the bioactivity of its metabolite Macrolactin A against aphids for the first time. RESULTS The results of activity tracking showed that the fermentation broth of YJNbs21.10 had the best inhibitory efficacy against R. padi, and the corrected efficiency reached 95.57% after 24 h. With the continuous separation and test, the efficiency of the active components decreased: Macrolactin A, as the most active substance, had a control activity against aphids under 500 mg L-1 of 74.64% at 72 h, (which was significantly lower than that of fermentation broth, indicating a synergistic effect between the active substances of each part of the strain. In addition, the result of the stereomicroscope showed that Macrolactin A damaged the body wall of aphids. The toxicity of Macrolactin A to R. padi was confirmed through the gradient test. CONCLUSION In this study, Bacillus amyloliquefaciens YJNbs21.10 exhibited comparable inhibitory ability to chemical pesticides suggesting its potential to provide effective biological control on aphids. The biological activity of Macrolactin A against aphids was also verified for the first time, in this experiment, the EC50 of this substance against aphids was 169.02 mg L-1 (24 h), which provided strong evidence that YJNbs21.10 may act as an effective agent for the prevention of aphid. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kangbo Zhao
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Ruyi Ma
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Min Cheng
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Ting Guo
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Wenjun Wu
- College of Plant Protection, Northwest A&F University, Yangling, China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, China
| | - Yuxin Song
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Hong Xu
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Aoping Tan
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Baofu Qin
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Shaopeng Wei
- College of Plant Protection, Northwest A&F University, Yangling, China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, China
| |
Collapse
|
2
|
Narasimman V, Ramachandran S. Purification, structural characterization, and neuroprotective effect of 3,6-diisobutyl-2,5-piperazinedione from Halomonas pacifica CARE-V15 against okadaic acid-induced neurotoxicity in zebrafish model. J Biochem Mol Toxicol 2024; 38:e23708. [PMID: 38597299 DOI: 10.1002/jbt.23708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/26/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Halomonas pacifica CARE-V15 was isolated from the southeastern coast of India to determine its genome sequence. Secondary metabolite gene clusters were identified using an anti-SMASH server. The concentrated crude ethyl acetate extract was evaluated by GC-MS. The bioactive compound from the crude ethyl acetate extract was fractionated by gel column chromatography. HPLC was used to purify the 3,6-diisobutyl-2,5-piperazinedione (DIP), and the structure was determined using FTIR and NMR spectroscopy. Purified DIP was used in an in silico molecular docking analysis. Purified DIP exhibits a stronger affinity for antioxidant genes like glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GSR). Using in silco molecular docking analysis, the protein-ligand binding affinities of GSR (-4.70 kcal/mol), GST (-5.27 kcal/mol), and GPx (-5.37 kcal/mol) were measured. The expression of antioxidant genes were investigated by qRT-PCR. The in vivo reactive oxygen species production, lipid peroxidation, and cell death levels were significantly (p ≤ 0.05) increased in OA-induced group, but all these levels were significantly (p ≤ 0.05) decreased in the purified DIP pretreated group. Purified DIP from halophilic bacteria could thus be a useful treatment for neurological disorders associated with oxidative stress.
Collapse
Affiliation(s)
- Vignesh Narasimman
- Native Medicine and Marine Pharmacology Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (Deemed to be University), Chettinad Health City, Kelambakkam, Tamil Nadu, India
| | - Saravanan Ramachandran
- Native Medicine and Marine Pharmacology Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (Deemed to be University), Chettinad Health City, Kelambakkam, Tamil Nadu, India
| |
Collapse
|
3
|
Guru A, Murugan R, Almutairi BO, Arokiyaraj S, Arockiaraj J. Brain targeted luteolin-graphene oxide nanoparticle abrogates polyethylene terephthalate induced altered neurological response in zebrafish. Mol Biol Rep 2023; 51:27. [PMID: 38133875 DOI: 10.1007/s11033-023-08960-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Polyethylene terephthalate (PET), a commonly used polymer in various food and plastic bag containers, has raised significant concerns regarding its environmental and human health risks. Despite its prevalent use, the impact of PET exposure on aquatic environments and its potential to induce neurotoxic conditions in species remain poorly understood. Furthermore, the mechanisms underlying amelioration through natural product intervention are not well-explored. In light of these gaps, our study aimed to elucidate the neurotoxic effects of PET in zebrafish through waterborne exposure, and to mitigate its neurological impact using luteolin-graphene oxide nanoparticles. METHODS AND RESULTS Our investigation revealed that exposure to PET in water triggered adverse effects in zebrafish larvae, particularly in the head region. We observed heightened oxidative stress, lipid peroxidation, and cell death, accompanied by impaired antioxidant defense enzymes. Furthermore, abnormal levels of acetylcholine esterase and nitric oxide in the zebrafish brain indicated cognitive impairment. To address these issues, we explored the potential neuroprotective effects of luteolin-graphene oxide nanoparticles. These nanoparticles demonstrated efficacy in localizing within the zebrafish brain, enhancing their therapeutic impact against PET exposure. Treatment with luteolin-graphene oxide nanoparticles not only mitigated PET-induced neurological alterations but also exhibited a neuroprotective effect. This was evidenced by the regulation of pro-inflammatory cytokine gene expression in the zebrafish brain. Additionally, normalization of locomotory behavior in PET-exposed zebrafish following nanoparticle treatment underscored the potential effectiveness of luteolin-graphene oxide nanoparticles as a treatment against PET-induced neurotoxicity. CONCLUSIONS In summary, our study emphasizes the urgent need to investigate the environmental and health risks associated with PET. We demonstrate the potential of luteolin-graphene oxide nanoparticles as an effective intervention against PET-induced neurotoxicity in zebrafish.
Collapse
Affiliation(s)
- Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
| | - Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603 203, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O.Box 2455, 11451, Riyadh, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, 05006, Seoul, Korea
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603 203, India.
| |
Collapse
|
4
|
de Menezes Souza J, de Menezes Fonseca D, Pinheiro de Souza J, Cordeiro do Nascimento L, Mendes Hughes F, Pereira Bezerra JD, Góes-Neto A, Ferreira-Silva A. Cactus Endophytic Fungi and Bioprospecting for their Enzymes and Bioactive Molecules: A Systematic Review. Chem Biodivers 2023; 20:e202301413. [PMID: 37934008 DOI: 10.1002/cbdv.202301413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
Abstract
Endophytic fungi are associated with plant health and represent a remarkable source of potential of enzymes and bioactive compounds, but the diversity of endophytes remains uncertain and poorly explored, especially in Cactaceae, one of the most species-rich families adapted to growing in arid and semi-arid regions. The aim of this study was to conduct a systematic review on the diversity and bioprospecting of endophytic fungi from Cactaceae. We analysed peer-reviewed articles from seven databases using PRISMA guidelines. The results showed that the Cactaceae family is a source of new taxa, but the diversity of endophytic fungi of Cactaceae is little explored, mainly the diversity among tissues and by metagenomics. Bioprospecting studies have shown that these microorganisms can be used in the production of enzymes and larvicidal and antifungal compounds. Our results are relevant as a starting point for researchers to develop studies that expand the knowledge of plant mycobiota in arid and semi-arid ecosystems, as well as comprising a remarkable source of fungal compounds with several biotechnological applications.
Collapse
Affiliation(s)
- Jeferson de Menezes Souza
- Graduate Program in Biotechnology, Universidade Estadual de Feira de Santana, Feira de Santana City, 44036-900, Bahia State, Brazil
| | | | - Jaciara Pinheiro de Souza
- Graduate Program in Pharmaceutical Sciences, Universidade Federal de Sergipe, Aracaju City, 41100-000, Sergipe State, Brazil
| | - Luciana Cordeiro do Nascimento
- Agricultural Sciences Center, Department of Phytotechnics and Environmental Sciences, Universidade Federal da Paraíba, Areia City, 58397-000, Paraíba State, Brazil
| | - Frederic Mendes Hughes
- Conselho de Curadores das Coleções Científicas and Graduate Program in Zoology, Universidade Estadual de Santa Cruz, Ilhéus City, 45662-900, Bahia State, Brazil
| | - Jadson Diogo Pereira Bezerra
- Departament of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia City, 74605-050, Goiás State, Brazil
| | - Aristóteles Góes-Neto
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte City, 31270-901, Minas Gerais State, Brazil
| | - Alice Ferreira-Silva
- Agricultural Sciences Center, Department of Phytotechnics and Environmental Sciences, Universidade Federal da Paraíba, Areia City, 58397-000, Paraíba State, Brazil
| |
Collapse
|
5
|
Katak RDM, Cintra AM, Burini BC, Marinotti O, Souza-Neto JA, Rocha EM. Biotechnological Potential of Microorganisms for Mosquito Population Control and Reduction in Vector Competence. INSECTS 2023; 14:718. [PMID: 37754686 PMCID: PMC10532289 DOI: 10.3390/insects14090718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023]
Abstract
Mosquitoes transmit pathogens that cause human diseases such as malaria, dengue fever, chikungunya, yellow fever, Zika fever, and filariasis. Biotechnological approaches using microorganisms have a significant potential to control mosquito populations and reduce their vector competence, making them alternatives to synthetic insecticides. Ongoing research has identified many microorganisms that can be used effectively to control mosquito populations and disease transmission. However, the successful implementation of these newly proposed approaches requires a thorough understanding of the multipronged microorganism-mosquito-pathogen-environment interactions. Although much has been achieved in discovering new entomopathogenic microorganisms, antipathogen compounds, and their mechanisms of action, only a few have been turned into viable products for mosquito control. There is a discrepancy between the number of microorganisms with the potential for the development of new insecticides and/or antipathogen products and the actual available products, highlighting the need for investments in the intersection of basic research and biotechnology.
Collapse
Affiliation(s)
- Ricardo de Melo Katak
- Malaria and Dengue Laboratory, Instituto Nacional de Pesquisas da Amazônia-INPA, Manaus 69060-001, AM, Brazil;
| | - Amanda Montezano Cintra
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (A.M.C.); (J.A.S.-N.)
| | - Bianca Correa Burini
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, USA;
| | - Osvaldo Marinotti
- Department of Biology, Indiana University, Bloomington, IN 47405, USA;
| | - Jayme A. Souza-Neto
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (A.M.C.); (J.A.S.-N.)
| | - Elerson Matos Rocha
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (A.M.C.); (J.A.S.-N.)
| |
Collapse
|
6
|
Zhu K, Liu X, Qi X, Liu Q, Wang B, Sun W, Pan B. Acaricidal activity of bioactive compounds isolated from Aspergillus oryzae against poultry red mites, Dermanyssus gallinae (Acari: Dermanyssidae). Vet Parasitol 2023; 320:109983. [PMID: 37450962 DOI: 10.1016/j.vetpar.2023.109983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Dermanyssus gallinae, the poultry red mite (PRM), is an obligate ectoparasite feeding on poultry blood, seriously affecting the health of layers and egg production. The control of PRMs mainly relies on chemical drugs, which is facing several challenges such as the environment pollution and drug resistance. Using fungal metabolites is an environmentally friendly alternative for the control of pests. However, few studies have been conducted on the efficacy of fungal metabolites against D. gallinae. In this study, five strains of fungi were isolated from D. gallinae under laboratory conditions, and their extracts with ethyl acetate were tested for acaricidal activity on D. gallinae. The crude extract of Aspergillus oryzae caused 75.55 ± 6.94% mortality of mites at a concentration of 12.5 mg/mL, showing the highest acaricidal effect in all extracts. Subsequently, the extract of A. oryzae was isolated by bio-guided fractionation, and ten major compounds were identified by LC-MS/MS analysis. The results of bioassays indicated that five compounds exhibited acaricidal activity against D. gallinae. N, N-dimethyldecylamine N-oxide was the optimal acaricidal compound with LC50 of 0.568 mg/mL. Additionally, palmitic acid, triethanolamine, cuminaldehyde, and 2,4-dimethylbenzaldehyde also showed acaricidal activity. These compounds have great application potential in the mite control, and the analysis of these fungal acaricidal substances provides a new idea and basis for the subsequent development of PRM control technology.
Collapse
Affiliation(s)
- Kexin Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xin Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoxiao Qi
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qi Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Bohan Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Weiwei Sun
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Baoliang Pan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Assemie A, Gemeda T. Larvicidal Activities of Allium sativum L. and Zingiber officinale Rosc. Extracts against Filariasis Vectors in Hadiya Zone, Ethiopia. BIOMED RESEARCH INTERNATIONAL 2023; 2023:6636837. [PMID: 37292452 PMCID: PMC10247325 DOI: 10.1155/2023/6636837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/02/2023] [Accepted: 05/13/2023] [Indexed: 06/10/2023]
Abstract
Mosquitoes present an immense threat to millions of people worldwide and act as vectors for filariasis disease. The objective of the study was to determine the effect of Allium sativum and Zingiber officinale extracts against filariasis vectors. The larvae were collected from the breeding site by using standard procedures for identification and larvicidal activities. Twenty grams (20 g) from each (Allium sativum and Zingiber officinale) were extracted separately by aqueous, ethanol, and methanol solvents. The phytochemical analysis was determined in the crude sample by using standard methods. Then, larvicidal effects were determined by introducing 10 larvae of the vectors to the concentrations of 250 ppm, 500 ppm, and 750 ppm of the crude sample, and data were subjected to probit analysis to determine the LC50 and Chi-squared test to check the significance of the mortality by R software. Anopheles funestus, Anopheles gambiae s.l., Anopheles pharoensis, Culex antennatus, and Culex quinquefasciatus were the filariasis vectors identified during the study period. The presence of phytochemical tests such as anthraquinones, flavonoids, glycosides, phenol, saponin, steroids, tannin, and terpenes was obtained. The larvicidal effects of the selected plant extracts ranged from 0%-100%. The lowest LC50 (53 ppm) was observed for A. sativum methanol test extract against Cx. quinquefasciatus. Ethanol extracts of A. sativum have a significant effect on An. funestus (X2 = 7.5, p = 0.02352) and Cx. quinquefasciatus (X2 = 10.833, p = 0.0.0044), whereas aqueous extracts have a significant effect only on An. gambiae s.l. (X2 = 7.0807, p = 0.029. Ethanol extracts of Z. officinale have a significant effect only on the mortality of An. pharoensis (X2 = 7.0807, p = 0.029), but methanol and aqueous extracts have no significant effect against filariasis vectors. In conclusion, A. sativum have a high toxic effect than Z. officinale extract against filariasis vectors in all type of solvents. So using those plant extracts is the best to reduce the risk of the synthetic chemical on nontarget organisms and the environment, in addition to the control of mosquito-borne diseases, but further studies will be conducted to evaluate the toxicity at different stages of the vectors.
Collapse
Affiliation(s)
- Anmut Assemie
- Department of Biology, Wachemo University, P.O. Box 667, Hossana, Ethiopia
| | - Temam Gemeda
- Department of Biotechnology, Wachemo University, PO Box 667, Hossana, Ethiopia
| |
Collapse
|