1
|
Guo X, Wang S, Wang C, Lan M, Yang S, Luo S, Li R, Xia J, Xiao B, Xie L, Wang Z, Guo Z. The Changes, Aggregation Processes, and Driving Factors for Soil Fungal Communities during Tropical Forest Restoration. J Fungi (Basel) 2023; 10:27. [PMID: 38248937 PMCID: PMC10817487 DOI: 10.3390/jof10010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/10/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Soil fungal communities play crucial roles in mediating the functional associations between above- and belowground components during forest restoration. Forest restoration shapes the alterations in plant and soil environments, which exerts a crucial effect on soil fungal assemblages. However, the changes, assembly processes, and driving factors of soil fungi communities during tropical forest restoration are still uncertain. We used Illumina high-throughput sequencing to identify the changes of soil fungal communities across a tropical secondary forest succession chronosequence (i.e., 12-, 42-, and 53-yr stages) in Xishuangbanna. During forest restoration, the dominant taxa of soil fungi communities shifted from r- to K-strategists. The relative abundance of Ascomycota (r-strategists) decreased by 10.0% and that of Basidiomycota (K-strategists) increased by 4.9% at the 53-yr restoration stage compared with the 12-yr stage. From the 12-yr to 53-yr stage, the operational taxonomic unit (OTU), abundance-based coverage estimator (ACE), Chao1, and Shannon index of fungal communities declined by 14.5-57.4%. Although the stochastic processes were relatively important in determining fungal assemblages at the late stage, the fungal community assembly was dominated by deterministic processes rather than stochastic processes. The shifts in soil properties resulting from tropical forest restoration exerted significant effects on fungal composition and diversity. The positive effects of microbial biomass carbon, readily oxidizable carbon, and soil water content explained 11.5%, 9.6%, and 9.1% of the variations in fungal community composition, respectively. In contrast, microbial biomass carbon (40.0%), readily oxidizable carbon (14.0%), and total nitrogen (13.6%) negatively contributed to the variations in fungal community diversity. Our data suggested that the changes in fungal composition and diversity during tropical forest restoration were primarily mediated by the positive or negative impacts of soil carbon and nitrogen pools.
Collapse
Affiliation(s)
- Xiaofei Guo
- College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China; (X.G.)
- College of Water Conservancy, Yunnan Agricultural University, Kunming 650201, China
| | - Shaojun Wang
- College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China; (X.G.)
| | - Chen Wang
- College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China; (X.G.)
| | - Mengjie Lan
- College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China; (X.G.)
| | - Shengqiu Yang
- College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China; (X.G.)
| | - Shuang Luo
- College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China; (X.G.)
| | - Rui Li
- College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China; (X.G.)
| | - Jiahui Xia
- College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China; (X.G.)
| | - Bo Xiao
- College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China; (X.G.)
| | - Lingling Xie
- College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China; (X.G.)
| | - Zhengjun Wang
- College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China; (X.G.)
| | - Zhipeng Guo
- College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China; (X.G.)
| |
Collapse
|
2
|
Perdomo-González A, Pérez-Reverón R, Goberna M, León-Barrios M, Fernández-López M, Villadas PJ, Reyes-Betancort JA, Díaz-Peña FJ. How harmful are exotic plantations for soils and its microbiome? A case study in an arid island. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163030. [PMID: 36963683 DOI: 10.1016/j.scitotenv.2023.163030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
The plantation of exotic species has been a common practice in (semi-) arid areas worldwide aiming to restore highly degraded habitats. The effects of these plantations on plant cover or soil erosion have been widely studied, while little attention has been paid to the consequences on soil quality and belowground biological communities. This study evaluates the long-term (>60 years) effects of the exotic species Acacia cyclops and Pinus halepensis revegetation on soil properties, including microbiome, in an arid island. Soils under exotic plantation were compared to both degraded soils with a very low cover of native species and soils with well-preserved native plant communities. Seven scenarios were selected in a small area (~25 ha) with similar soil type but differing in the plant cover. Topsoils (0-15 cm) were analyzed for physical, chemical and biochemical properties, and amplicon sequencing of bacterial and fungal communities. Microbial diversity was similar among soils with exotic plants and native vegetation (Shannon's index = 5.26 and 5.34, respectively), while the most eroded soils exhibited significantly lower diversity levels (Shannon's index = 4.72). Bacterial and fungal communities' composition in degraded soils greatly differed from those in vegetated soils (Canberra index = 0.85 and 0.92, respectively) likely due to high soil sodicity, fine textures and compaction. Microbial communities' composition also differed in soils covered with exotic and native species, to a greater extent for fungi than for bacteria (Canberra index = 0.94 and 0.89, respectively), due to higher levels of nutrients, microbial biomass and activity in soils with native species. Results suggest that reforestation succeeded in avoiding further soil degradation but still leading to relevant changes in soil microbial community that may have negative effects on ecosystem stability. Information gained in this research could be useful for environmental agencies and decision makers about the controversial replacement of exotic plants in insular territories.
Collapse
Affiliation(s)
- Adolfo Perdomo-González
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain.
| | - Raquel Pérez-Reverón
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Marta Goberna
- Departamento de Medio Ambiente y Agronomía, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Milagros León-Barrios
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Manuel Fernández-López
- Grupo de Microbiología de Ecosistemas Agroforestales, Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Pablo J Villadas
- Grupo de Microbiología de Ecosistemas Agroforestales, Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - J Alfredo Reyes-Betancort
- Jardín de Aclimatación de La Orotava, Instituto Canario de Investigaciones Agrarias (ICIA), 38400 Puerto de la Cruz, Spain
| | - Francisco J Díaz-Peña
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain.
| |
Collapse
|