1
|
Abid A, Raza S, Qureshi AK, Ali S, Areej I, Nazeer S, Tan B, Al-Onazi WA, Rizwan M, Iqbal R. Facile synthesis of anthranilic acid based dual functionalized novel hyper cross-linked polymer for promising CO 2 capture and efficient Cr 3+ adsorption. Sci Rep 2024; 14:11328. [PMID: 38760400 PMCID: PMC11101437 DOI: 10.1038/s41598-024-61584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
A novel hyper cross-linked polymer of 2-Aminobenzoic acid (HCP-AA) is synthesized for the adsorption of Cr3+ and CO2. The Brunauer-Emmett-Teller surface area of HCP-AA is 615 m2 g-1. HCP-AA of particle size 0.5 nm showed maximum adsorption of Cr3+ for lab prepared wastewater (93%) while it was 88% for real industrial wastewater. It is might be due to electrostatic interactions, cation-π interactions, lone pair interactions and cation exchange at pH 7; contact time of 8 min; adsorbent dose 0.8 g. The adsorption capacity was calculated 52.63 mg g-1 for chromium metal ions at optimum conditions. Freundlich isotherm studies R2 = 0.9273 value is the best fit and follows pseudo second order kinetic model (R2 = 0.979). The adsorption is found non-spontaneous and exothermic through thermodynamic calculations like Gibbs free energy (ΔG), enthalpy change (ΔH) and entropy change (ΔS) were 6.58 kJ mol-1, - 60.91 kJ mol-1 and - 45.79 kJ mol-1 K-1, respectively. The CO2 adsorption capacity of HCP-AA is 1.39 mmol/g with quantity of 31.1 cm3/g (6.1 wt%) at 273Kwhile at 298 K adsorption capacity is 1.12 mmol/g with quantity 25.2 cm3/g (5 wt%). Overall, study suggests that carboxyl (-COOH) and amino (-NH2) groups may be actively enhancing the adsorption capacity of HCP-AA for Cr3+ and CO2.
Collapse
Affiliation(s)
- Amin Abid
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan
| | - Saqlain Raza
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan
| | | | - Sajjad Ali
- Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Isham Areej
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan
| | - Shahid Nazeer
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan
| | - Bien Tan
- Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Wedad A Al-Onazi
- Department of Chemistry, College of Science, King Saud University, P.O. 22452, 11495, Riyadh, Saudi Arabia
| | - Muhammad Rizwan
- Institute of Crops Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
| | - Rashid Iqbal
- Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| |
Collapse
|
2
|
Zhou J, Mogollón JM, van Bodegom PM, Beusen AHW, Scherer L. Global regionalized characterization factors for phosphorus and nitrogen impacts on freshwater fish biodiversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169108. [PMID: 38065495 DOI: 10.1016/j.scitotenv.2023.169108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Inefficient global nutrient (i.e., phosphorus (P) and nitrogen (N)) management leads to an increase in nutrient delivery to freshwater and coastal ecosystems and induces eutrophication in these aquatic environments. This process threatens the various species inhabiting these ecosystems. In this study, we developed regionalized characterization factors (CFs) for freshwater eutrophication at 0.5 × 0.5-degree resolution, considering different fates for direct emissions to freshwater, diffuse emissions, and increased erosion due to agricultural land use. The CFs were provided for global and regional species loss of freshwater fish. CFs for global species loss were quantified by integrating global extinction probabilities. Results showed that the CFs for P and N impacts on freshwater fish are higher in densely populated regions that encompass either large lakes or the headwaters of large rivers. Focusing on nutrient-limited areas increases country-level CFs in 51.9 % of the countries for P and 49.5 % of the countries for N compared to not considering nutrient limitation. This study highlights the relevance of considering freshwater eutrophication impacts via both P and N emissions and identifying the limiting nutrient when performing life cycle impact assessments.
Collapse
Affiliation(s)
- Jinhui Zhou
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands.
| | - José M Mogollón
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands
| | - Peter M van Bodegom
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands
| | - Arthur H W Beusen
- PBL Netherlands Environmental Assessment Agency, the Hague, the Netherlands; Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
| | - Laura Scherer
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands
| |
Collapse
|
3
|
Zhou J, Mogollón JM, van Bodegom PM, Barbarossa V, Beusen AHW, Scherer L. Effects of Nitrogen Emissions on Fish Species Richness across the World's Freshwater Ecoregions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37216582 DOI: 10.1021/acs.est.2c09333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The increasing application of synthetic fertilizer has tripled nitrogen (N) inputs over the 20th century. N enrichment decreases water quality and threatens aquatic species such as fish through eutrophication and toxicity. However, the impacts of N on freshwater ecosystems are typically neglected in life cycle assessment (LCA). Due to the variety of environmental conditions and species compositions, the response of species to N emissions differs among ecoregions, requiring a regionalized effect assessment. Our study tackled this issue by establishing regionalized species sensitivity distributions (SSDs) of freshwater fish against N concentrations for 367 ecoregions and 48 combinations of realms and major habitat types globally. Subsequently, effect factors (EFs) were derived for LCA to assess the effects of N on fish species richness at a 0.5 degree × 0.5 degree resolution. Results show good SSD fits for all of the ecoregions that contain sufficient data and similar patterns for average and marginal EFs. The SSDs highlight strong effects on species richness due to high N concentrations in the tropical zone and the vulnerability of cold regions. Our study revealed the regional differences in sensitivities of freshwater ecosystems against N content in great spatial detail and can be used to assess more precisely and comprehensively nutrient-induced impacts in LCA.
Collapse
Affiliation(s)
- Jinhui Zhou
- Institute of Environmental Sciences (CML), Leiden University, 2311 EZ Leiden, The Netherlands
| | - José M Mogollón
- Institute of Environmental Sciences (CML), Leiden University, 2311 EZ Leiden, The Netherlands
| | - Peter M van Bodegom
- Institute of Environmental Sciences (CML), Leiden University, 2311 EZ Leiden, The Netherlands
| | - Valerio Barbarossa
- Institute of Environmental Sciences (CML), Leiden University, 2311 EZ Leiden, The Netherlands
- PBL Netherlands Environmental Assessment Agency, 2594 AV The Hague, The Netherlands
| | - Arthur H W Beusen
- PBL Netherlands Environmental Assessment Agency, 2594 AV The Hague, The Netherlands
- Department of Earth Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Laura Scherer
- Institute of Environmental Sciences (CML), Leiden University, 2311 EZ Leiden, The Netherlands
| |
Collapse
|
4
|
Pierrat É, Laurent A, Dorber M, Rygaard M, Verones F, Hauschild M. Advancing water footprint assessments: Combining the impacts of water pollution and scarcity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161910. [PMID: 36736405 DOI: 10.1016/j.scitotenv.2023.161910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Several water footprint indicators have been developed to curb freshwater stress. Volumetric footprints support water allocation decisions and strive to increase water productivity in all sectors. In contrast, impact-oriented footprints are used to minimize the impacts of water use on human health, ecosystems, and freshwater resources. Efforts to combine both perspectives in a harmonized framework have been undertaken, but common challenges remain, such as pollution and ecosystems impacts modelling. To address these knowledge gaps, we build upon a water footprint assessment framework proposed at conceptual level to expand and operationalize relevant features. We propose two regionalized indicators, namely the water biodiversity footprint and the water resource footprint, that aggregate all impacts from toxic chemicals, nutrients, and water scarcity. The first impact indicator represents the impacts on freshwater ecosystems. The second one models the competition for freshwater resources and its consequences on freshwater availability. As part of the framework, we complement the two indicators with a sustainability assessment representing the levels above which ecological and human freshwater needs are no longer sustained. We test our approach assessing the sustainability of water use in the European Union in 2010. Water stress hampers 15 % of domestic, agricultural and industrial water demand, mainly due to irrigation and pesticide emissions in southern Europe. Moreover, damage to the freshwater ecosystems is widespread and mostly resulting from chemical emissions from industry. Approximately 5 % of the area is exceeding the regional sustainability limits for ecosystems and human water requirements altogether. Concerted efforts from all sectors are needed to reduce the impacts of emissions and water consumption under the sustainability limits. These advances are considered an important step toward the harmonization of volumetric and impact-oriented approaches to achieve consistent and holistic water footprinting as well as contributing to strengthen the policy relevance of water footprint assessments.
Collapse
Affiliation(s)
- Éléonore Pierrat
- Section for Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark (DTU), 2800 Kgs. Lyngby, Denmark.
| | - Alexis Laurent
- Section for Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark (DTU), 2800 Kgs. Lyngby, Denmark
| | - Martin Dorber
- Industrial Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Høgskøleringen 5, 7034, Trondheim, Norway
| | - Martin Rygaard
- Water Technology and Processes, Department of Environmental and Resource Engineering, Technical University of Denmark (DTU), 2800 Kgs. Lyngby, Denmark
| | - Francesca Verones
- Industrial Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Høgskøleringen 5, 7034, Trondheim, Norway
| | - Michael Hauschild
- Section for Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark (DTU), 2800 Kgs. Lyngby, Denmark
| |
Collapse
|