1
|
Shi L, Feng Y, Wang J, Xiao R, Wang L, Tian P, Jin X, Zhao J, Wang G. Innovative mechanisms of micro- and nanoplastic-induced brain injury: Emphasis on the microbiota-gut-brain axis. Life Sci 2024; 357:123107. [PMID: 39369844 DOI: 10.1016/j.lfs.2024.123107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Micro- and nanoplastics (MNPs), emerging environmental pollutants, infiltrate marine, terrestrial, and freshwater systems via diverse pathways, culminating in their accumulation in the human body through food chain transmission, posing potential health risks. Researches have demonstrated that MNPs disrupt gut microbiota equilibrium and compromise intestinal barrier integrity, as well as traverse the blood-brain barrier, leading to brain damage. Moreover, the complex interaction between the gut and the nervous system, facilitated by the "gut-brain axis," indicates an additional pathway for MNPs-induced brain damage. This has intensified scientific interest in the intercommunication between MNPs and the gut-brain axis. While existing studies have documented microbial imbalances and metabolic disruptions subsequent to MNPs exposure, the precise mechanisms by which the microbiota-gut-brain axis contributes to MNPs-induced central nervous system damage remain unclear. This review synthesizes current knowledge on the microbiota-gut-brain axis, elucidating the pathogenesis of MNPs-induced gut microbiota dysbiosis and its consequent brain injury. It emphasizes the complex interrelation between MNPs and the microbiota-gut-brain axis, advocating for the gut microbiota as a novel therapeutic target to alleviate MNP-induced brain harm.
Collapse
Affiliation(s)
- Liuting Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | | | - Jialiang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Rui Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xing Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing People's Hospital, Jiangsu, Wuxi 214200, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China.
| |
Collapse
|
2
|
Tao Y, Feng X, Xu H. The whole life journey and destination of microplastics: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125165. [PMID: 39427952 DOI: 10.1016/j.envpol.2024.125165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Recent reports indicate that ubiquitous microplastics (MPs) in the environment can infiltrate the human body, posing significant health risks and garnering widespread attention. However, public understanding of the intricate processes through which microplastics are transferred to humans remains limited. Consequently, developing effective strategies to mitigate the escalating issue of MPs pollution and safeguard human health is still challenging. In this review, we elucidated the sources and dynamic migration pathways of MPs, examined its complex interactions with other pollutants, and identified primary routes of human exposure. Subsequently, the events and alterations of gut microbiota, gut microbiota metabolism, and intestinal barrier after MPs enter the gut of organisms are unclosed. Additionally, it highlighted the ease with which MPs translocate from the intestine to other organs along with their biological toxicities. Finally, we also emphasized the knowledge gaps in the current research field and proposes future research directions. This review aims to enhance public awareness regarding microplastic pollution and provide valuable references for forthcoming research endeavors as well as policy formulation related to this pressing issue.
Collapse
Affiliation(s)
- You Tao
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.
| |
Collapse
|
3
|
Jing L, Zhang Y, Zhang Q, Zhao H. Polystyrene microplastics disrupted physical barriers, microbiota composition and immune responses in the cecum of developmental Japanese quails. J Environ Sci (China) 2024; 144:225-235. [PMID: 38802233 DOI: 10.1016/j.jes.2023.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 05/29/2024]
Abstract
Microplastics, a new type of emerging pollutant, is ubiquitous in terrestrial and water environments. Microplastics have become a growing concern due to their impacts on the environment, animal, and human health. Birds also suffer from microplastics contamination. In this study, we examined the toxic effects of polystyrene microplastics (PS-MPs) exposure on physical barrier, microbial community, and immune function in the cecum of a model bird species-Japanese quail (Coturnix japonica). The one-week-old birds were fed on environmentally relevant concentrations of 20 µg/kg, 400 µg/kg, and 8 mg/kg PS-MPs in the diet for 5 weeks. The results showed that microplastics could cause microstructural damages characterized by lamina propria damage and epithelial cell vacuolation and ultrastructural injuries including microvilli breakage and disarrangement as well as mitochondrial vacuolation in the cecum of quails. In particular, blurry tight junctions, wider desmosomes spacing, and gene expression alteration indicated cecal tight junction malfunction. Moreover, mucous layer breakdown and mucin decrease indicated that chemical barrier was disturbed by PS-MPs. PS-MPs also changed cecal microbial diversity. In addition, structural deformation of cecal tonsils and increasing proinflammatory cytokines suggested cecal immune disorder and inflammation responses by PS-MPs exposure. Our results suggested that microplastics negatively affected digestive system and might pose great health risks to terrestrial birds.
Collapse
Affiliation(s)
- Lingyang Jing
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yuxin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Qingyu Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
4
|
Shelver WL, McGarvey AM, Billey LO. Disposition of [ 14C]-polystyrene microplastics after oral administration to lactating sheep. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1132-1143. [PMID: 39037984 DOI: 10.1080/19440049.2024.2379382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/25/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024]
Abstract
Microplastics have become a ubiquitous contaminant, but their fate in food animals is largely unknown. In this study, [14C]-polystyrene microplastic (PS-MP) particles were orally dosed to lactating sheep to evaluate their absorption and disposition. Elimination of the [14C]-PS-MP was predominately through faeces with faecal radioactivity peaking at 24 h post-dosing but continuing to be present throughout the entire 72 h study period. Only a small fraction (≤ 1%) of the dosed [14C]-PS-MP was present in blood, milk, and urine. Pharmacokinetic analysis of blood plasma radioactivity, using non-compartment modeling, indicated rapid absorption (T1/2 0.4 to 3 h) with slow elimination (T1/2 37 to 48 h). Radioactivity in milk and urine had similar elimination patterns with radiocarbon activities peaking 24 h post-dosing with detectable elimination throughout the 72 h study period. No radioactivity was quantifiable in tissues at the 72 h withdrawal period.
Collapse
Affiliation(s)
- Weilin L Shelver
- USDA Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, North Dakota, USA
| | - Amy M McGarvey
- USDA Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, North Dakota, USA
| | - Lloyd O Billey
- USDA Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, North Dakota, USA
| |
Collapse
|
5
|
Zha H, Han S, Tang R, Cao D, Chang K, Li L. Polylactic acid micro/nanoplastic-induced hepatotoxicity: Investigating food and air sources via multi-omics. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100428. [PMID: 38800715 PMCID: PMC11127520 DOI: 10.1016/j.ese.2024.100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Micro/nanoplastics (MNPs) are detected in human liver, and pose significant risks to human health. Oral exposure to MNPs derived from non-biodegradable plastics can induce toxicity in mouse liver. Similarly, nasal exposure to non-biodegradable plastics can cause airway dysbiosis in mice. However, the hepatotoxicity induced by foodborne and airborne biodegradable MNPs remains poorly understood. Here we show the hepatotoxic effects of biodegradable polylactic acid (PLA) MNPs through multi-omics analysis of various biological samples from mice, including gut, fecal, nasal, lung, liver, and blood samples. Our results show that both foodborne and airborne PLA MNPs compromise liver function, disrupt serum antioxidant activity, and cause liver pathology. Specifically, foodborne MNPs lead to gut microbial dysbiosis, metabolic alterations in the gut and serum, and liver transcriptomic changes. Airborne MNPs affect nasal and lung microbiota, alter lung and serum metabolites, and disrupt liver transcriptomics. The gut Lachnospiraceae_NK4A136_group is a potential biomarker for foodborne PLA MNP exposure, while nasal unclassified_Muribaculaceae and lung Klebsiella are potential biomarkers for airborne PLA MNP exposure. The relevant results suggest that foodborne PLA MNPs could affect the "gut microbiota-gut-liver" axis and induce hepatoxicity, while airborne PLA MNPs could disrupt the "airway microbiota-lung-liver" axis and cause hepatoxicity. These findings have implications for diagnosing PLA MNPs-induced hepatotoxicity and managing biodegradable materials in the environment. Our current study could be a starting point for biodegradable MNPs-induced hepatotoxicity. More research is needed to verify and inhibit the pathways that are crucial to MNPs-induced hepatotoxicity.
Collapse
Affiliation(s)
- Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiqi Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kevin Chang
- Department of Statistics, The University of Auckland, Auckland, New Zealand
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Shi C, Li Y, Wang H, Zhang S, Deng J, Aziz-Ur-Rahman M, Cui Y, Lu L, Zhao W, Qiu X, He Y, Cao B, Abbas W, Ramzan F, Ren X, Su H. From Food Waste to Sustainable Agriculture: Nutritive Value of Potato By-Product in Total Mixed Ration for Angus Bulls. Foods 2024; 13:2771. [PMID: 39272536 PMCID: PMC11394973 DOI: 10.3390/foods13172771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Raw potato fries are a type of potato by-product (PBP), and they have great potential as a partial replacement of grain in animal feeds to improve the environmental sustainability of food production. This study aimed to investigate the effects of replacing corn with different levels of PBP (0%, 12.84%, 25.65%, and 38.44%) in the total mixed ration (TMR) of Angus bull. Sixty 16-month-old Angus bulls (548.5 ± 15.0 kg, mean ± SD) were randomly assigned to four treatments. The results indicated that with the increase in the substitution amount of PBP, the body weight decreased significantly. The dry matter apparent digestibility and starch apparent digestibility linearly decreased as PBP replacement increased. The feed ingredient composition in the TMR varied, leading to a corresponding change in the rumen microbiota, especially in cellulolytic bacteria and amylolytic bacteria. The abundance of Succiniclasticum in the 12.84% PBP and 38.44% PBP diets was significantly higher than that in the 0% PBP and 25.65% PBP diets. The abundance of Ruminococcus linearly increased. In conclusion, using PBP to replace corn for beef cattle had no negative impact on rumen fermentation, and the decrease in apparent digestibility explained the change in growth performance. Its application in practical production is highly cost-effective and a strategy to reduce food waste.
Collapse
Affiliation(s)
- Changxiao Shi
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yingqi Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huili Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Siyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiajie Deng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Muhammad Aziz-Ur-Rahman
- Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Yafang Cui
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lianqiang Lu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenxi Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xinjun Qiu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yang He
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Binghai Cao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Waseem Abbas
- Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Faisal Ramzan
- Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Xiufang Ren
- Shangdu County Animal Husbandry Service Center, Shangdu County, Ulanchap 013450, China
| | - Huawei Su
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Wang L, Nabi F, Zhang X, Zhou G, Shah QA, Li S, Lu Y, Mu S, Zhu X, Lin Z, Li J. Effects of Lactobacillus plantarum on Broiler Health: Integrated Microbial and Metabolomics Analysis. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10336-x. [PMID: 39090454 DOI: 10.1007/s12602-024-10336-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Given China's prohibition on the utilization of antibiotics as feed additives in 2020, we aim to investigate nutrition additives that are both efficient and safe. Lactobacillus, a well-recognized beneficial probiotic, has explicitly been investigated for its effects on health status of the host and overall impact on food industry. To evaluate effects of Lactobacillus plantarum (LW) supplementation on broiler chicken, we conducted comprehensive multi-omics analysis, growth performance evaluation, RT-qPCR analysis, and immunofluorescence. The findings revealed that LW supplementation resulted in a substantial progress in growth performance (approximately 205 g increase in final body weight in comparison to the control group (p < 0.01)). Additionally, LW exhibited promising potential for enhancing antioxidant properties of serum and promoting gut integrity and growth as evidenced by improved antioxidant indices (p < 0.01), intestinal villus morphology (p < 0.01), and enhanced gut barrier function (p < 0.01). Meanwhile, the multi-omics analysis, including 16S rRNA sequencing and liquid chromatography-tandem mass spectrometry, revealed an enrichment of beneficial microbes in the gut of broilers that were supplemented with LW, while simultaneously depleting harmful microorganisms. Moreover, a noteworthy modification was observed in gut metabolic profiling subsequent to the execution of the probiotic strategy. Specifically, variations were noticed in the levels of metabolites and metabolic pathways such as parathyroid hormone synthesis, inflammatory mediator regulation of TRP channels, oxidative phosphorylation, and mineral absorption. Taken together, our findings validate that LW administration produces valuable effects on the health and growth performance of broilers owing to its capability to boost the gut microbiota homeostasis and intestinal metabolism. Present findings signify the potential of LW as a dietary additive to promote growth and development in broiler chickens.
Collapse
Affiliation(s)
- Lei Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Fazul Nabi
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 90150, Pakistan
| | - Xiaohu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Guangyu Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qurban Ali Shah
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 90150, Pakistan
| | - Siyuan Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yaozhong Lu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Siyang Mu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiaohui Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhengrong Lin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
8
|
Zou D, Yang Y, Ji F, Lv R, Wu H, Hou G, Xu T, Zhou H, Hu C. Polystyrene Microplastics Causes Diarrhea and Impairs Intestinal Angiogenesis through the ROS/METTL3 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39012162 DOI: 10.1021/acs.jafc.4c03238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Due to the immature intestinal digestion, immunity, and barrier functions, weaned infants are more susceptible to pathogens and develop diarrhea. Microplastics (MPs), pervasive contaminants in food, water, and air, have unknown effects on the intestinal development of weaned infants. This study explored the impact of polystyrene MPs on intestinal development using a weaned piglet model. Piglets in the control group received a basal diet, and those in the experimental groups received a basal diet contaminated with 150 mg/kg polystyrene MPs. The results showed that exposure to polystyrene MPs increased the diarrhea incidence and impaired the intestinal barrier function of weaned piglets. Notably, the exposure led to oxidative stress and inflammation in the intestine. Furthermore, polystyrene MPs-treated weaned piglets showed a reduced level of intestinal angiogenesis. Mechanistically, polystyrene MPs suppressed methyltransferase-like 3 (METTL3) expression by increasing reactive oxygen species (ROS) production, consequently destabilizing angiogenic factors' mRNA and hindering intestinal angiogenesis. In summary, polystyrene MPs contamination in the diet increases diarrhea and compromises intestinal angiogenesis through the ROS/METTL3 pathway, demonstrating their toxic effects on the intestine health of weaned infants.
Collapse
Affiliation(s)
- Dongbin Zou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- College of Life Sciences, Hainan University, Haikou 571101, China
| | - Yun Yang
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fengjie Ji
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Renlong Lv
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Hongzhi Wu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Guanyu Hou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Tieshan Xu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Hanlin Zhou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Chengjun Hu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
9
|
Guo T, Geng X, Zhang Y, Hou L, Lu H, Xing M, Wang Y. New insights into the spleen injury by mitochondrial dysfunction of chicken under polystyrene microplastics stress. Poult Sci 2024; 103:103674. [PMID: 38583309 PMCID: PMC11004413 DOI: 10.1016/j.psj.2024.103674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Microplastics biological toxicity, environmental persistence and biological chemicals have been paid widespread attention. Microplastics exposed to chicken spleen injury of the specific mechanism is unclear. Thus, we randomly assigned chickens to 4 groups: C (normal diet), L-MPs (1 mg/L), M-MPs (10 mg/L), and H-MPs (100 mg/L), and assessed spleen damage after 42 d of exposure. Morphologically, the boundary between the red and white pulp of the spleen was blurred, along with the expansion of the white pulp. It was further speculated that microplastics induced mitochondrial dynamic homeostasis (Drp1 upgraded, Mfn1, Mfn2, and OPA1 reduced), and provoked the mitochondrial apoptotic pathway (Bcl-2/Bax decreased, cytc, caspase3, and caspase9 raised), resulting in redox imbalance and lipid peroxide accumulation (MDA increased, CAT, GSH, and T-AOC plummeted), and further stimulated ferroptosis (FTH1, GPX4, and SLC7A11 decreased). Here we explored the impact of polystyrene microplastics on the spleen, as well as the programmed death (apoptosis and ferroptosis) involved, and the regulative role of mitochondria in this process. This could be of significant importance in bridging the gap in laboratory research on microplastics-induced spleen injury in chicken.
Collapse
Affiliation(s)
- Tiantian Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Xiren Geng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China.
| |
Collapse
|
10
|
Tao H, Zhou L, Yu D, Chen Y, Luo Y, Lin T. Effects of polystyrene microplastics on the metabolic level of Pseudomonas aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171335. [PMID: 38423332 DOI: 10.1016/j.scitotenv.2024.171335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Given the widespread presence of Pseudomonas aeruginosa in water and its threat to human health, the metabolic changes in Pseudomonas aeruginosa when exposed to polystyrene microplastics (PS-MPs) exposure were studied, focusing on molecular level. Through non-targeted metabolomics, a total of 64 differential metabolites were screened out under positive ion mode and 44 under negative ion mode. The content of bacterial metabolites changed significantly, primarily involving lipids, nucleotides, amino acids, and organic acids. Heightened intracellular oxidative damage led to a decrease in lipid molecules and nucleotide-related metabolites. The down-regulation of amino acid metabolites, such as L-Glutamic and L-Proline, highlighted disruptions in cellular energy metabolism and the impaired ability to synthesize proteins as a defense against oxidation. The impact of PS-MPs on organic acid metabolism was evident in the inhibition of pyruvate and citrate, thereby disrupting the cells' normal participation in energy cycles. The integration of Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that PS-MPs mainly caused changes in metabolic pathways, including ABC transporters, Aminoacyl-tRNA biosynthesis, Purine metabolism, Glycerophospholipid metabolism and TCA cycle in Pseudomonas aeruginosa. Most of the differential metabolites enriched in these pathways were down-regulated, demonstrating that PS-MPs hindered the expression of metabolic pathways, ultimately impairing the ability of cells to synthesize proteins, DNA, and RNA. This disruption affected cell proliferation and information transduction, thus hampering energy circulation and inhibiting cell growth. Findings of this study supplemented the toxic effects of microplastics and the defense mechanisms of microorganisms, in turn safeguarding drinking water safety and human health.
Collapse
Affiliation(s)
- Hui Tao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Lingqin Zhou
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Duo Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yiyang Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yunxin Luo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
11
|
Ruuskanen S. Early-life environmental effects on birds: epigenetics and microbiome as mechanisms underlying long-lasting phenotypic changes. J Exp Biol 2024; 227:jeb246024. [PMID: 38449325 DOI: 10.1242/jeb.246024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Although the long-lasting effects of variation in early-life environment have been well documented across organisms, the underlying causal mechanisms are only recently starting to be unraveled. Yet understanding the underlying mechanisms of long-lasting effects can help us predict how organisms will respond to changing environments. Birds offer a great system in which to study developmental plasticity and its underlying mechanisms owing to the production of large external eggs and variation in developmental trajectories, combined with a long tradition of applied, physiological, ecological and evolutionary research. Epigenetic changes (such as DNA methylation) have been suggested to be a key mechanism mediating long-lasting effects of the early-life environment across taxa. More recently, changes in the early-life gut microbiome have been identified as another potential mediator of developmental plasticity. As a first step in understanding whether these mechanisms contribute to developmental plasticity in birds, this Review summarizes how changes in early-life environment (both prenatal and postnatal) influence epigenetic markers and the gut microbiome. The literature shows how both early-life biotic (such as resources and social environment) and abiotic (thermal environment and various anthropogenic stressors) factors modify epigenetic markers and the gut microbiome in birds, yet data concerning many other environmental factors are limited. The causal links of these modifications to lasting phenotypic changes are still scarce, but changes in the hypothalamic-pituitary-adrenal axis have been identified as one putative pathway. This Review identifies several knowledge gaps, including data on the long-term effects, stability of the molecular changes, and lack of diversity in the systems studied, and provides directions for future research.
Collapse
Affiliation(s)
- Suvi Ruuskanen
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9C, 40500 Jyväskylä, Finland
- Department of Biology, University of Turku, Vesilinnankatu 5, 20500 Turku, Finland
| |
Collapse
|
12
|
Wen J, Sun H, Yang B, Song E, Song Y, Jiang G. Environmentally Relevant Concentrations of Microplastic Exposure Cause Cholestasis and Bile Acid Metabolism Dysregulation through a Gut-Liver Loop in Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1832-1841. [PMID: 38230996 DOI: 10.1021/acs.est.3c07108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The massive production of plastics causes the ubiquitous existence of microplastics (MPs) in the biota, therefore, posing exposure risks and potential health concerns to human beings. However, the exact mechanisms of MPs-induced toxicities and abnormalities are largely unknown. In this study, we developed a mouse model of gavage polystyrene microplastics (PS MPs) for 30 days. We found that PS MPs can damage the intestinal barrier, accumulate in the liver tissue, and cause injury. The liver and intestine are both highly associated with bile acid (BA) metabolism. Indeed, we found that PS MPs dysregulate BA synthesis and efflux-related gene expression in the liver, causing cholestasis. Tandemly, PS MPs alter the ratio of primary to secondary BA in the feces by affecting the composition of the intestinal flora. At last, PS MPs alter mice's fecal BA profile, which affects normal BA metabolism. Taken together, the present study provides robust data on the mechanism of toxicity of MPs causing the disturbance of BA metabolism via a 4-step gut-liver loop.
Collapse
Affiliation(s)
- Jing Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hang Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Bingwei Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
13
|
Zhao Y, Jia H, Deng H, Ge C, Xing W, Yu H, Li J. Integrated microbiota and multi-omics analysis reveal the differential responses of earthworm to conventional and biodegradable microplastics in soil under biogas slurry irrigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168191. [PMID: 37907108 DOI: 10.1016/j.scitotenv.2023.168191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
As one of the promising alternatives of conventional plastic mulching film (C-PMF), biodegradable plastic mulching films (B-PMF) were employed in agronomy production to alleviate the environmental burden of C-PMF. However, information regarding the potential toxicity effects of biodegradable microplastics (MPs) in soil still in scarcity, and the available findings were found to be controversial. Additionally, little is known about the molecular toxicity effects of conventional and biodegradable MPs on terrestrial organisms. Thus, 5 % (w/w) biodegradable (polylactic acid, PLA) and conventional (polyvinylchloride, PVC; low-density polyvinylchloride, LDPE) MPs were employed to assess the toxicity effects on Eisenia fetida in agricultural soil with biogas slurry irrigation. In the present study, transcriptomic, metabolomic profiles and individual indexes were selected to reveal the toxicity mechanisms from molecular level to the individual response. Furthermore, dysbiosis of bacterial community in gut was also investigated for obtaining comprehensive knowledge on the MPs toxicity. At the end of the exposure, the number of survival earthworms after MPs exposure was significantly reduced. Compared with the initial body weight, PLA and LDPE increased the biomass of earthworms after MPs exposure, while no significant influence on the biomass was observed in PVC treatment. Microbacterium, Klebsiella and Chryseobacterium were significantly enriched in earthworm gut after PLA, PVC and LDPE exposure, respectively (p < 0.05). Transcriptomic and metabolomic analysis revealed that PLA exposure induced neurotransmission disorder and high energetic expenditure in earthworms. However, PVC and LDPE inhibited the nutrient absorption efficiency and activated the innate immunity responses of earthworms. The PLS-SEM results showed that the effects of MPs were dominated by the polymer types, and hence, significantly and directly influence the gut bacterial community of earthworms. This study provides a better understanding of the similarities and discrepancies in toxicity effects of biodegradable and conventional MPs from the perspectives of individual, gut bacterial community, transcriptome and metabolome.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Huiting Jia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Hui Deng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China.
| | - Wenzhe Xing
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Huamei Yu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China.
| | - Jiatong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| |
Collapse
|
14
|
Zhang Z, Chen W, Chan H, Peng J, Zhu P, Li J, Jiang X, Zhang Z, Wang Y, Tan Z, Peng Y, Zhang S, Lin K, Yung KKL. Polystyrene microplastics induce size-dependent multi-organ damage in mice: Insights into gut microbiota and fecal metabolites. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132503. [PMID: 37717443 DOI: 10.1016/j.jhazmat.2023.132503] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Particle size is one of the most important factors in determining the biological toxicity of microplastics (MPs). In this study, we attempted to examine the systemic toxicity of polystyrene MPs of different sizes (0.5 µm MP1 and 5 µm MP2) in C57BL/6 J mice. After the mice were given oral gavage of MPs for 8 consecutive weeks, histopathology and molecular biology assays, 16 S rRNA sequencing of the gut microbiota, and untargeted metabolomics were performed. The results showed that MPs were distributed in the organs in a size-dependent manner, with smaller particles demonstrating greater biodistribution. Further analysis indicated that exposure to MPs caused multi-organ damage through distinct toxicity pathways. Specifically, exposure to 0.5 µm MP1 led to excessive accumulation and induced more serious inflammation and mechanical damage in the spleen, kidney, heart, lung, and liver. However, 5 µm MP2 led to more severe intestinal barrier dysfunction, as well as gut dysbiosis and metabolic disorder in association with neuroinflammation. These results are helpful in expanding our knowledge of the toxicity of MPs of different sizes in mammalian models.
Collapse
Affiliation(s)
- Zhu Zhang
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong Special Administrative Region; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Wenqing Chen
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Hiutung Chan
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Junjie Peng
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Peili Zhu
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong Special Administrative Region; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Junkui Li
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong Special Administrative Region; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Xiaoli Jiang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Zhang Zhang
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Ying Wang
- Key Laboratory of Cellular Physiology, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Zicong Tan
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Yungkang Peng
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Shiqing Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China.
| | - Kaili Lin
- School of Public Health, Guangzhou Medical University, Guangzhou, China.
| | - Ken Kin-Lam Yung
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong Special Administrative Region; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
15
|
Yu C, Xu Y, Wei Y, Guo Y, Wang Y, Song P, Yu J. Gut microbiota and liver metabolomics reveal the potential mechanism of Lactobacillus rhamnosus GG modulating the liver toxicity caused by polystyrene microplastics in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6527-6542. [PMID: 38151562 DOI: 10.1007/s11356-023-31564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Microplastics (MPs) are known to cause liver toxicity as they can spread through the food chain. Most researches on their toxicity have focused on individual organs, neglecting the crucial "gut-liver axis"-a bidirectional communication pathway between the gut and liver. Probiotics have shown promise in modulating the effects of environmental pollutants. In this study, we exposed mice to Lactobacillus rhamnosus GG (LGG, 100 mg/kg b.w./d) and/or polystyrene microplastics (PS-MPs, 5 mg/kg b.w./d) for 28 d via gavage to investigate how probiotics influence live toxicity through the gut-liver axis. Our results demonstrated that PS-MPs induced liver inflammation (increased IL-6 and TNF-α) and disrupted lipid metabolism. However, when combined with LGG, these effects were alleviated. LGG also improved colon health, rectifying ciliary defects and abnormal mucus secretion caused by PS-MPs. Furthermore, LGG improved gut microbiota dysbiosis induced by PS-MPs. Metabolomics and gene expression analysis (Cyp7a1 and Cyp7b1) indicated that LGG modulated bile acid metabolism. In summary, LGG appears to protect the liver by maintaining gut homeostasis, enhancing gut barrier integrity, and reducing the liver inflammation. These findings confirm the potential of LGG to modulate liver toxicity caused by PS-MPs through the gut-liver axis, offering insights into probiotics' application for environmental pollutant detoxification.
Collapse
Affiliation(s)
- Changhao Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Nanjing, 210023, People's Republic of China
| | - Yawen Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Nanjing, 210023, People's Republic of China
| | - Yiping Wei
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Nanjing, 210023, People's Republic of China
| | - Yuxue Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Nanjing, 210023, People's Republic of China
| | - Yi Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Nanjing, 210023, People's Republic of China
| | - Ping Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Nanjing, 210023, People's Republic of China
| | - Jing Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
16
|
Zhu J, Chen X, Chen SC, Qiu W, Yu J, Guo T, Wang X. Diversity and community composition of strictly anaerobic and culturable bacteria from the feces of Styrofoam-fed Tenebrio molitor larvae: a culturomics-based study. Front Microbiol 2023; 14:1309806. [PMID: 38116533 PMCID: PMC10728288 DOI: 10.3389/fmicb.2023.1309806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/09/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction In recent years, researchers have been exploring the plastic-degrading abilities of bacteria residing in the guts of Styrofoam-eating Tenebrio molitor larvae. However, none of the reported strains have displayed highly efficient plastic degradation capabilities, and it's noteworthy that none of the existing studies have focused on strictly anaerobic microbes. Methods In this study, we exclusively fed Styrofoam to T. molitor larvae and examined how this dietary change influence the gut's bacterial community composition, as observed through fecal bacteria using bacterial 16S rRNA gene amplicon sequencing and the small-scale culturomics method with 20 types of anaerobic media under four different conditions. Results The results revealed a significant shift in the dominant phylogroup from Lactococcus (37.8%) to Escherichia-Shigella (54.7%) when comparing the feces of larvae fed with bran and Styrofoam, as analyzing through the bacterial 16S rRNA gene amplicon sequencing. For small-scale culturomics method, a total of 226 strains of anaerobic bacteria were isolated and purified using the rolling-tube/strictly anaerobic technique. Among them, 226 strains were classified into 3 phyla, 7 classes, 9 orders, 17 families, 29 genera, 42 known species and 34 potential novel species. Discussion Interestingly, 24 genera in total, identified through the culturomics method, were not found in the results obtained from amplicon sequencing. Here, we present a collection of culturable anaerobic bacteria from the feces of T. molitor larvae, which might be a promising avenue for investigating the biodegradability of plastics by combining specific strains, either randomly or intentionally, while considering the abundance ratio of the microbial community composition.
Collapse
Affiliation(s)
- Junyu Zhu
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, China
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, China
| | - Xiaochen Chen
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Sheng-Chung Chen
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, China
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, China
| | - Wanling Qiu
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, China
| | - Jianying Yu
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, China
- The Second Geological Exploration Institute, China Metallurgical Geology Bureau, Fuzhou, Fujian, China
| | - Tengfei Guo
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, China
- The Second Geological Exploration Institute, China Metallurgical Geology Bureau, Fuzhou, Fujian, China
| | - Xianxing Wang
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, China
- The Second Geological Exploration Institute, China Metallurgical Geology Bureau, Fuzhou, Fujian, China
| |
Collapse
|
17
|
Wang X, Mi J, Yang K, Wang L. Environmental Cadmium Exposure Perturbs Gut Microbial Dysbiosis in Ducks. Vet Sci 2023; 10:649. [PMID: 37999472 PMCID: PMC10674682 DOI: 10.3390/vetsci10110649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 11/25/2023] Open
Abstract
Ore extraction, chemical production, and agricultural fertilizers may release significant amounts of heavy metals, which may eventually accumulate widely in the environment and organisms over time, causing global ecological and health problems. As a recognized environmental contaminant, cadmium has been demonstrated to cause osteoporosis and renal injury, but research regarding the effects of cadmium on gut microbiota in ducks remains scarce. Herein, we aimed to characterize the adverse effects of cadmium on gut microbiota in ducks. Results indicated that cadmium exposure dramatically decreased gut microbial alpha diversity and caused significant changes in the main component of gut microbiota. Moreover, we also observed significant changes in the gut microbial composition in ducks exposed to cadmium. A microbial taxonomic investigation showed that Firmicutes, Bacteroidota, and Proteobacteria were the most preponderant phyla in ducks regardless of treatment, but the compositions and abundances of dominant genera were different. Meanwhile, a Metastats analysis indicated that cadmium exposure also caused a distinct increase in the levels of 1 phylum and 22 genera, as well as a significant reduction in the levels of 1 phylum and 36 genera. In summary, this investigation demonstrated that cadmium exposure could disturb gut microbial homeostasis by decreasing microbial diversity and altering microbial composition. Additionally, under the background of the rising environmental pollution caused by heavy metals, this investigation provides a crucial message for the assessment of environmental risks associated with cadmium exposure.
Collapse
Affiliation(s)
| | | | | | - Lian Wang
- Department of Medical Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; (X.W.); (J.M.); (K.Y.)
| |
Collapse
|
18
|
Zhang Y, Hou B, Liu T, Wu Y, Wang Z. Probiotics improve polystyrene microplastics-induced male reproductive toxicity in mice by alleviating inflammatory response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115248. [PMID: 37441951 DOI: 10.1016/j.ecoenv.2023.115248] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
As a new type of environmental pollutant, microplastics have been garnered increasing attention, especially in regard to their effects on the reproductive system. However, researchers have yet to report whether prevention and treatment measures exist for reproductive injury caused by microplastics. The aim of this study was therefore to explore the mechanism of spermatogenic injury induced by polystyrene microplastics (PS-MPs) and the intervention effect of probiotics based on the gut microbiota-testis axis. Mice were orally exposed for 35 days to 5 µm of PS-MPs with a gavage dose was 0.1 mg/day, and the intervention group was given probiotics (Lactobacillus, Bifidobacterium longum, and Enterococcus) orally. Fecal samples were then subjected to 16 S rRNA sequencing analysis, and sperm motion was analyzed by a Hamilton-Thorne Sperm analyzer. The results showed that PS-MPs exposed mice had significant spermatogenic dysfunction and testicular inflammation. In addition, the intestinal microbial structure of exposed mice changed significantly; the abundance of Lactobacillus decreased, and the abundance of Prevotella increased. Furthermore, with fecal microbiota transplantation, the recipient mice showed a significant decrease in sperm quality. However, probiotics supplementation helped inhibit the activation of IL-17A signaling driven by gut microbes, thereby alleviating the inflammatory response and improving sperm quality decline caused by PS-MPs. These results may provide a scientific basis for further understanding of the mechanism of male reproductive damage caused by environmental pollutants such as microplastics and for novel reproductive damage intervention measures.
Collapse
Affiliation(s)
- Yecui Zhang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Baolian Hou
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tao Liu
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yanling Wu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhiping Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
19
|
Kaseke T, Lujic T, Cirkovic Velickovic T. Nano- and Microplastics Migration from Plastic Food Packaging into Dairy Products: Impact on Nutrient Digestion, Absorption, and Metabolism. Foods 2023; 12:3043. [PMID: 37628042 PMCID: PMC10453031 DOI: 10.3390/foods12163043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The ongoing use of plastic polymers to manufacture food packaging has raised concerns about the presence of nano- and microplastics (NMPs) in a variety of foods. This review provides the most recent data on NMPs' migration from plastic packaging into dairy products. Also discussed are the possible effects of NMPs on nutrient digestion, absorption, and metabolism. Different kinds of dairy products, including skimmed milk, whole liquid milk, powder milk, and infant formula milk, have been found to contain NMPs of various sizes, shapes, and concentrations. NMPs may interact with proteins, carbohydrates, and fats and have a detrimental impact on how well these nutrients are digested and absorbed by the body. The presence of NMPs in the gastrointestinal tract may impact how lipids, proteins, glucose, iron, and energy are metabolized, increasing the risk of developing various health conditions. In addition to NMPs, plastic oligomers released from food packaging material have been found to migrate to various foods and food simulants, though information regarding their effect on human health is limited. Viewpoints on potential directions for future studies on NMPs and their impact on nutrient digestion, absorption, and health are also presented in this review.
Collapse
Affiliation(s)
- Tafadzwa Kaseke
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Tamara Lujic
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Tanja Cirkovic Velickovic
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
- Department of Food Technology, Safety, and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
- Center for Food Chemistry and Technology, Ghent University Global Campus, Incheon 21985, Republic of Korea
- Serbian Academy of Sciences and Arts, Knez Mihajlova 35, 11000 Belgrade, Serbia
| |
Collapse
|
20
|
Sheriff I, Yusoff MS, Manan TSBA, Koroma M. Microplastics in manure: Sources, analytical methods, toxicodynamic, and toxicokinetic endpoints in livestock and poultry. ENVIRONMENTAL ADVANCES 2023; 12:100372. [DOI: 10.1016/j.envadv.2023.100372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
21
|
Zhu Y, Cidan Y, Sun G, Li X, Shahid MA, Luosang Z, Suolang Z, Suo L, Basang W. Comparative analysis of gut fungal composition and structure of the yaks under different feeding models. Front Vet Sci 2023; 10:1193558. [PMID: 37396992 PMCID: PMC10310795 DOI: 10.3389/fvets.2023.1193558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/09/2023] [Indexed: 07/04/2023] Open
Abstract
The yaks that inhabit the Tibetan plateau are a rare breed that is closely related to local economic development and human civilization. This ancient breed may have evolved a unique gut microbiota due to the hypoxic high-altitude environment. The gut microbiota is susceptible to external factors, but research regarding the effects of different feeding models on the gut fungal community in yaks remains scarce. In this study, we compared and analyzed the composition and variability of the gut fungal community among wild yaks (WYG), house-feeding domestic yaks (HFG), and grazing domestic yaks (GYG). The results revealed that Basidiomycota and Ascomycota were the most preponderant phyla in the gut fungal community, regardless of feeding models. Although the types of dominant fungal phyla did not change, their abundances did. Intergroup analysis of fungal diversity showed that the Shannon and Simpson indices of WYG and GYG were significantly higher than those of HFG. Fungal taxonomic analysis showed that there were 20 genera (Sclerostagonospora and Didymella) that were significantly different between WYG and GYG, and 16 genera (Thelebolus and Cystobasidium) that were significantly different between the WYG and HFG. Furthermore, the proportions of 14 genera (Claussenomyces and Papiliotrema) significantly decreased, whereas the proportions of eight genera (Stropharia and Lichtheimia) significantly increased in HFG as compared to GYG. Taken together, this study indicated that the gut fungal composition and structure differ significantly between yaks raised in different breeding groups.
Collapse
Affiliation(s)
- Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
- Linzhou Animal Husbandry and Veterinary Station, Lhasa, China
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| | - Yangji Cidan
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Guangming Sun
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Xin Li
- Linzhou Animal Husbandry and Veterinary Station, Lhasa, China
| | - Muhammad Akbar Shahid
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Zhaxi Luosang
- Linzhou Animal Husbandry and Veterinary Station, Lhasa, China
| | - Zhaxi Suolang
- Linzhou Animal Husbandry and Veterinary Station, Lhasa, China
| | - Lang Suo
- Linzhou Animal Husbandry and Veterinary Station, Lhasa, China
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| |
Collapse
|
22
|
Niu H, Liu S, Jiang Y, Hu Y, Li Y, He L, Xing M, Li X, Wu L, Chen Z, Wang X, Lou X. Are Microplastics Toxic? A Review from Eco-Toxicity to Effects on the Gut Microbiota. Metabolites 2023; 13:739. [PMID: 37367897 DOI: 10.3390/metabo13060739] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/15/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Emerging studies have presented an initial picture of the toxic effects of exposure to environmental micro- and nanoplastics. They have indicated that micro- and nanoplastics may induce toxicity by leading to oxidative stress, energy metabolism disorders, gene damage, and so forth in environmental organisms, marine invertebrates and vertebrates, and laboratory mouse models. In recent years, micro- and nanoplastics have been discovered in human fecal samples, placentas, lung tissue, and even blood; thus, micro- and nanoplastics pose an alarming and ever-increasing threat to global public health. However, current research on the health effects of micro- and nanoplastics and the possible adverse outcomes in humans has only presented the tip of the iceberg. More robust clinical data and basic experiments are still warranted to elucidate the specific relationships and mechanisms. In this paper, we review studies on micro- and nanoplastic toxicity from the perspectives of eco-toxicity, the adverse effects on invertebrates and vertebrates, and the impact of micro- and nanoplastics on the gut microbiota and its metabolites. In addition, we evaluate the toxicological role of micro- and nanoplastic exposure and its potential implications in respect to human health. We also summarize studies regarding preventive strategies. Overall, this review provides insights on micro- and nanoplastic toxicity and its underlying mechanisms, opening up scientific avenues for future in-depth studies.
Collapse
Affiliation(s)
- Huixia Niu
- Health Science Center, Ningbo University, Ningbo 315000, China
| | - Shaojie Liu
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Yujie Jiang
- Health Science Center, Ningbo University, Ningbo 315000, China
| | - Yang Hu
- Health Science Center, Ningbo University, Ningbo 315000, China
| | - Yahui Li
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| | - Luyang He
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| | - Mingluan Xing
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| | - Xueqing Li
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| | - Lizhi Wu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| | - Xiaoming Lou
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| |
Collapse
|
23
|
Li J, Yin K, Hou L, Zhang Y, Lu H, Ma C, Xing M. Polystyrene microplastics mediate inflammatory responses in the chicken thymus by Nrf2/NF-κB pathway and trigger autophagy and apoptosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104136. [PMID: 37127111 DOI: 10.1016/j.etap.2023.104136] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/15/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs) are now a hot environmental contaminant. However, researchers paid little attention to their effects on immune organs such as the thymus. Here, we exposed chickens to a concentration gradient of polystyrene microplastics (PS-MPs) and then followed the decrease in the thymus index. HE staining showed cellular infiltration in the thymus. The assay kit corroborated that PS-MPs impelled oxidative stress in the thymus: increased MDA levels, downregulated antioxidants such as SOD, CAT, and GSH, and significantly undermined total antioxidant capacity. Western blotting and qRT-PCR results showed that Nrf2/NF-κB, Bcl-2/Bax, and AKT signaling pathways were activated in the thymus after exposure to PS-MPs. It stimulated the increased expression of downstream such as IL-1β, caspase-3, and Beclin1, triggering thymus inflammation, apoptosis, and autophagy. This study provides new insights into the field of microplastic immunotoxicity and highlights potential environmental hazards in poultry farming.
Collapse
Affiliation(s)
- Junbo Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Chengxue Ma
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
24
|
Ji J, Wu X, Li X, Zhu Y. Effects of microplastics in aquatic environments on inflammatory bowel disease. ENVIRONMENTAL RESEARCH 2023; 229:115974. [PMID: 37088319 DOI: 10.1016/j.envres.2023.115974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/03/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
The incidence of inflammatory bowel disease (IBD) has been increasing in recent years, particularly in newly industrialized nations. Environmental factors have been identified as playing a crucial role in IBD pathogenesis. Microplastics (MPs), a novel class of environmental pollutants, are a significant global pollution concern. MPs are found in almost all aquatic environments. MPs in the environment may pose health risks, specifically concerning the intestinal system, due to prolonged exposure through the consumption of aquatic foods and drinking water. In this review, we aimed to provide a comprehensive overview of the current knowledge on the impact of MPs in water resources on the occurrence and progression of IBD. Our systematic analysis of in vitro and in vivo studies found that MPs induce intestinal barrier dysfunction, imbalance in the intestinal microbiome, and metabolic abnormalities, ultimately leading to IBD. In addition, MP exposure causes greater harm to individuals with preexisting gastrointestinal disorders than those without them. Our analysis of this literature review highlights the need for further research to improve the understanding of the complex relationship between MP exposure and IBD.
Collapse
Affiliation(s)
- Jiali Ji
- The Affiliated Kangning Hospital, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xinyue Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Xi Li
- The Affiliated Kangning Hospital, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ya Zhu
- The Affiliated Kangning Hospital, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
25
|
Microplastics in Terrestrial Domestic Animals and Human Health: Implications for Food Security and Food Safety and Their Role as Sentinels. Animals (Basel) 2023; 13:ani13040661. [PMID: 36830448 PMCID: PMC9951732 DOI: 10.3390/ani13040661] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Terrestrial domestic animals are exposed to microplastics, therefore, contaminating the food chain, in the case of livestock, or acting as sentinels for human exposure, in the case of companion animals. The aim of this review was to address the importance of terrestrial domestic animals on human exposure to microplastics. Animal products may already show some microplastics contamination, which may occur during their lifetime, possibly also compromising productivity, and during processing, originating from equipment and packaging. Moreover, release of microplastics in animal feces (or manure) leads to the contamination of agricultural fields, with possible impacts and internalization in plants. Therefore, microplastics pose a threat to food security, compromising food productivity, and food safety, by being a foreign material found in animal products. Conversely, in urban environments, companion animals (cats and dogs) may be relevant sentinels for human exposure. While oral exposure may vary in pets compared to humans, due to indiscriminate ingestion and chewing or licking behaviors, airborne exposure is likely to be a good indicator for human exposure. Therefore, future studies should address the importance of terrestrial domestic animals for human exposure of microplastics, both in the food chain and as sentinels for environmental exposure.
Collapse
|
26
|
Yan A, Ding H, Liu J, Bi C, Han Z, Wang Z, Nawaz S, Shen Y, Liu S. Black Lycium barbarum polysaccharide attenuates LPS-induced intestine damage via regulation gut microbiota. Front Microbiol 2023; 13:1080922. [PMID: 36741888 PMCID: PMC9893023 DOI: 10.3389/fmicb.2022.1080922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/08/2022] [Indexed: 01/20/2023] Open
Abstract
Lycium barbarums are traditionally used as a homology of medicinal plants in China with a potent role in metabolism and immunomodulation. The current study was performed to explore the attenuation effect and microbiota regulation of Lycium barbarum polysaccharide (BLBP) on lipopolysaccharide (LPS)-induced intestine damage in mice. A total of 70 mice were randomly divided into five groups; negative control (GA), LPS (GB), both treated with an equal volume of normal saline, and BLBP treatment groups GC (100 mg/kg), GD (200 mg/kg), and GE (400 mg/kg) via gavage for 19 days. On Day 19, mice in groups GB, GC, GD, and GE were treated with 10 mg/kg LPS for 24 h and euthanized to collect intestine samples for pathological examination and microbiota sequencing. The results showed a non-significant difference in body weight gain among the five mouse groups; however, mice in the GC and GE groups showed decreased weight gain. An H&E examination revealed that the integrity of intestinal villi was destroyed by LPS, while BLBP supplement alleviated intestinal damage with an increase in villus height and a decrease in crypt depth. A total of over 59,000, 40,000, 50,000, 45,000, and 55,000 raw sequences were found in groups GA, GB, GC, GD, and GE, respectively. LPS challenge decreased alpha diversity indexes significantly (p < 0.05), while a non-significant difference was found between different BLBP treatment groups and the GA group. A total of 8 phyla and 13 genera were found among five mouse groups, and BLBP partly restored the bacterial abundance in mice. LPS changed 282 metabolic pathways in KEGG L2, 77 metabolic pathways in KEGG L3, and 205 metabolic pathways in MetaCyc, respectively. The BLBP-supplemented groups, especially GE, showed reverse effects on those metabolic pathways. The current study revealed that BLBP can effectively decrease intestinal damage through the regulation of intestinal microbiota, which may provide new insights for the prevention of intestinal disease using food and medicine homologous of Lycium ruthenicum.
Collapse
Affiliation(s)
- An Yan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Houkang Ding
- College of Veterinary Medicine/Traditional Chinese Veterinary Medicine, Hebei Agriculture University, Baoding, China
| | - Junjun Liu
- College of Veterinary Medicine/Traditional Chinese Veterinary Medicine, Hebei Agriculture University, Baoding, China
| | - Chongliang Bi
- College of Agriculture and Forestry, Linyi University, Linyi, Shandong, China
| | - Zhaoqing Han
- College of Agriculture and Forestry, Linyi University, Linyi, Shandong, China
| | - Zhennan Wang
- College of Agriculture and Forestry, Linyi University, Linyi, Shandong, China
| | - Shah Nawaz
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Yizhao Shen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, China,Key Laboratory of Healthy Breeding in Dairy Cattle (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Baoding, Hebei, China,*Correspondence: Yizhao Shen,
| | - Shudong Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, China,Shudong Liu,
| |
Collapse
|
27
|
Sarkar S, Diab H, Thompson J. Microplastic Pollution: Chemical Characterization and Impact on Wildlife. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1745. [PMID: 36767120 PMCID: PMC9914693 DOI: 10.3390/ijerph20031745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Microplastics are small pieces of plastic that are less than 5 mm in size and can be found in most environments, including the oceans, rivers, and air. These small plastic particles can have negative impacts on wildlife and the environment. In this review of the literature, we analyze the presence of microplastics in various species of wildlife, including fish, birds, and mammals. We describe a variety of analytical techniques, such as microscopy and spectrometry, which identify and quantify the microplastics in the samples. In addition, techniques of sample preparation are discussed. Summary results show that microplastics are present in all the wildlife species studied, with the highest concentrations often found in fish and birds. The literature suggests that microplastics are widely distributed in the environment and have the potential to affect a wide range of species. Further research is required to fully understand the impacts of microplastics on wildlife and the environment.
Collapse
|
28
|
Li A, Wang M, Zhang Y, Lin Z, Xu M, Wang L, Kulyar MFEA, Li J. Complete genome analysis of Bacillus subtilis derived from yaks and its probiotic characteristics. Front Vet Sci 2023; 9:1099150. [PMID: 36713867 PMCID: PMC9875379 DOI: 10.3389/fvets.2022.1099150] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Probiotics have attracted attention due to their multiple health benefits to the host. Yaks inhabiting the Tibetan plateau exhibit excellent disease resistance and tolerance, which may be associated with their inner probiotics. Currently, research on probiotics mainly focuses on their positive effects on the host, but information regarding their genome remains unclear. To reveal the potential functional genes of Bacillus subtilis isolated from yaks, we sequenced its whole genome. Results indicated that the genomic length of Bacillus subtilis was 866,044,638 bp, with 4,429 coding genes. The genome of this bacteria was composed of one chromosome and one plasmid with lengths of 4,214,774 and 54,527 bp, respectively. Moreover, Bacillus subtilis contained 86 tRNAs, 27 rRNAs (9 16S_rRNA, 9 23S_rRNA, and 9 5S_rRNA), and 114 other ncRNA. KEGG annotation indicated that most genes in Bacillus subtilis were associated with biosynthesis of amino acids, carbon metabolism, purine metabolism, pyrimidine metabolism, and ABC transporters. GO annotation demonstrated that most genes in Bacillus subtilis were related to nucleic acid binding transcription factor activity, transporter activity, antioxidant activity, and biological adhesion. EggNOG uncovered that most genes in Bacillus subtilis were related to energy production and conversion, amino acid transport and metabolism, carbohydrate transport and metabolism. CAZy annotation found glycoside hydrolases (33.65%), glycosyl transferases (22.11%), polysaccharide lyases (3.84%), carbohydrate esterases (14.42%), auxiliary activities (3.36%), and carbohydrate-binding modules (22.59%). In conclusion, this study investigated the genome and genetic properties of Bacillus subtilis derived from yaks, which contributed to understanding the potential prebiotic mechanism of probiotics from the genetic perspective.
Collapse
Affiliation(s)
- Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Meng Wang
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Yu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhengrong Lin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mengen Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lei Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Fakhar-e-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, China,*Correspondence: Jiakui Li ✉
| |
Collapse
|