1
|
Wang L, Wang Y, Sun D, Wang J, Lee SJ, Viscarra Rossel RA, Gan Y. Soil carbon stocks in temperate grasslands reach equilibrium with grazing duration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175081. [PMID: 39069182 DOI: 10.1016/j.scitotenv.2024.175081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Lost soil organic carbon (SOC) in degraded grasslands can be restored via the 'grazing exclusion' practice, but it was unknown how long (# of years) the restoration process can take. A synthesis of four decades of studies revealed that grazing exclusion increased SOC stocks in the topsoil (0-0.30 m) by 14.8 % (±0.8 Std Err), on average, compared to moderate-to-heavy grazing (MtH); During which SOC stock increased steadily, peaked in Year 18.5, and then declined. At peak, SOC stock was 42.5 % greater under grazing exclusion than under MtH due to 100.4 ± 4.2 % increase in aboveground biomass and 80.3 ± 33.5 % increase in root biomass. Grazing exclusion also increased soil C:N ratio by 7.6 % while decreasing bulk density by 9.4 %. Grazing exclusion could be ceased 18.5 years after initiation of grazing exclusion as plant biomass input balances carbon decomposition and SOC equilibrium occurs then additional benefits start diminishing.
Collapse
Affiliation(s)
- Li Wang
- College of Life and Environmental Science, State & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Zhejiang Provincial Collaborative Innovation Center for Tideland Reclamation and Ecological Protection, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Yijia Wang
- College of Life and Environmental Science, State & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Zhejiang Provincial Collaborative Innovation Center for Tideland Reclamation and Ecological Protection, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Dandi Sun
- College of Life and Environmental Science, State & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Zhejiang Provincial Collaborative Innovation Center for Tideland Reclamation and Ecological Protection, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Junying Wang
- College of Life and Environmental Science, State & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Zhejiang Provincial Collaborative Innovation Center for Tideland Reclamation and Ecological Protection, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Soon-Jae Lee
- Department of Ecology and Evolution, University of Lausanne, Lausanne CH1015, Switzerland
| | | | - Yantai Gan
- College of Life and Environmental Science, State & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Zhejiang Provincial Collaborative Innovation Center for Tideland Reclamation and Ecological Protection, Wenzhou University, Wenzhou, Zhejiang 325035, China; Agroecosystems, The UBC-Soil Group, Tallus Heights, Kelowna, BC V4T 3M2, Canada.
| |
Collapse
|
2
|
Golchin A, Misaghi M. Investigating the effects of climate change and anthropogenic activities on SOC storage and cumulative CO 2 emissions in forest soils across altitudinal gradients using the century model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173758. [PMID: 38852874 DOI: 10.1016/j.scitotenv.2024.173758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
This study investigated the impact of climate change, grazing, manure application, and liming on soil organic carbon (SOC) stock and cumulative carbon dioxide (CO2) emissions in forest soils across different altitudes. Despite similar soil texture, acidity, and salinity across elevations, SOC stock significantly increased with altitude due to cooler temperatures and higher precipitation. The highest SOC stock (97.46 t ha-1) was observed at 2000-2500 m, compared to the lowest (44.23 t ha-1) at 500-1000 m. The Century C Model accurately predicted SOC stock, with correlation and determination coefficients exceeding 0.98. A climate change scenario projecting decreased precipitation (2.15 mm per decade) and increased temperature (0.4 °C) revealed potential SOC stock losses ranging from 28.36 to 36.35 %, particularly at higher altitudes. Grazing further decreased SOC stock, with a more pronounced effect at higher elevations. However, manure application (40 t ha-1 every four years) and liming (7-10 t ha-1 every three years) had positive effects on SOC stock, again amplified at higher altitudes and with an increase in lime application rate. In scenarios combining climate change with manure application and climate change with liming, manure application and liming mitigated some negative impacts of climate change, but could not fully offset them, resulting in 1.49-5.42 % and 0.39-4.07 % decreases respectively. Simulations of cumulative CO2 emissions mirrored the distribution of SOC stock, with higher emissions observed at higher altitudes and with management practices that increased SOC stock. This study emphasizes the critical role of conserving high-altitude forest soils and implementing optimal forest management strategies to combat climate change by minimizing SOC losses.
Collapse
Affiliation(s)
- Ahmad Golchin
- Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
| | - Mehran Misaghi
- Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
| |
Collapse
|
3
|
He T, Ding W, Cheng X, Cai Y, Zhang Y, Xia H, Wang X, Zhang J, Zhang K, Zhang Q. Meta-analysis shows the impacts of ecological restoration on greenhouse gas emissions. Nat Commun 2024; 15:2668. [PMID: 38531906 DOI: 10.1038/s41467-024-46991-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
International initiatives set ambitious targets for ecological restoration, which is considered a promising greenhouse gas mitigation strategy. Here, we conduct a meta-analysis to quantify the impacts of ecological restoration on greenhouse gas emissions using a dataset compiled from 253 articles. Our findings reveal that forest and grassland restoration increase CH4 uptake by 90.0% and 30.8%, respectively, mainly due to changes in soil properties. Conversely, wetland restoration increases CH4 emissions by 544.4%, primarily attributable to elevated water table depth. Forest and grassland restoration have no significant effect on N2O emissions, while wetland restoration reduces N2O emissions by 68.6%. Wetland restoration enhances net CO2 uptake, and the transition from net CO2 sources to net sinks takes approximately 4 years following restoration. The net ecosystem CO2 exchange of the restored forests decreases with restoration age, and the transition from net CO2 sources to net sinks takes about 3-5 years for afforestation and reforestation sites, and 6-13 years for clear-cutting and post-fire sites. Overall, forest, grassland and wetland restoration decrease the global warming potentials by 327.7%, 157.7% and 62.0% compared with their paired control ecosystems, respectively. Our findings suggest that afforestation, reforestation, rewetting drained wetlands, and restoring degraded grasslands through grazing exclusion, reducing grazing intensity, or converting croplands to grasslands can effectively mitigate greenhouse gas emissions.
Collapse
Affiliation(s)
- Tiehu He
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P.R. China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, P.R. China
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Weixin Ding
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaoli Cheng
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, P. R. China
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yulong Zhang
- Eastern Forest Environmental Threat Assessment Center, Southern Research Station, USDA Forest Service, Research Triangle Park, NC, 27709, USA
| | - Huijuan Xia
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P.R. China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, P.R. China
| | - Xia Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P.R. China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, P.R. China
| | - Jiehao Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P.R. China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, P.R. China
| | - Kerong Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P.R. China.
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, P.R. China.
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Quanfa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P.R. China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, P.R. China
| |
Collapse
|
4
|
Liu F, Gao M, Zhang H, Yuan H, Zong R, Liu Z, Wei S, Li Q. Response of soil CO 2 emissions and water-carbon use efficiency of winter wheat to different straw returning methods and irrigation scenarios. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2449-2457. [PMID: 37961839 DOI: 10.1002/jsfa.13126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND The shortage of water resources and the increase of greenhouse gas emissions from soil seriously restrict the sustainable development of agriculture. Under the premise of ensuring a stable yield of winter wheat through a reasonable irrigation scenario, identifying a suitable straw returning method will have a positive effect on agricultural carbon sequestration and emission reduction in North China Plain. RESULTS Straw burying (SR) and straw mulching (SM) were adopted based on traditional tillage under in the winter wheat growing season of 2020-2021 and 2021-2022. Three irrigation scenarios were used for each straw returning method: no irrigation (I0), irrigation 60 mm at jointing stage (I1), and irrigation of 60 mm each at the jointing and heading stages (I2). Soil moisture, soil respiration rate, cumulative soil CO2 emissions, yield, water use efficiency (WUE) and soil CO2 emission efficiency (CEE) were mainly studied. The results showed that, compared to SM, SR improved the utilization of soil water and enhanced soil carbon sequestration. SR reduced soil respiration rate and cumulative soil CO2 emissions in two winter wheat growing seasons, and increased yield by increasing spike numbers. In addition, with an increase in the amount of irrigation, soil CO2 emissions and yield increased. Under SR-I1 treatment, WUE and CEE were the highest. SR-I1 increases crop yields at the same time as reducing soil CO2 emissions. CONCLUSION The combination of SR and irrigation 60 mm at jointing stage is a suitable straw returning irrigation scenario, which can improve water use and reduce soil CO2 emission in NCP. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fuying Liu
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Mingliang Gao
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Haoze Zhang
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Huabin Yuan
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Rui Zong
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Zhendong Liu
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Shiyu Wei
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Quanqi Li
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
5
|
Wang S, Chen X, Li W, Gong W, Wang Z, Cao W. Grazing exclusion alters soil methane flux and methanotrophic and methanogenic communities in alpine meadows on the Qinghai-Tibet Plateau. Front Microbiol 2023; 14:1293720. [PMID: 38164400 PMCID: PMC10757936 DOI: 10.3389/fmicb.2023.1293720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Grazing exclusion (GE) is an effective measure for restoring degraded grassland ecosystems. However, the effect of GE on methane (CH4) uptake and production remains unclear in dominant bacterial taxa, main metabolic pathways, and drivers of these pathways. This study aimed to determine CH4 flux in alpine meadow soil using the chamber method. The in situ composition of soil aerobic CH4-oxidizing bacteria (MOB) and CH4-producing archaea (MPA) as well as the relative abundance of their functional genes were analyzed in grazed and nongrazed (6 years) alpine meadows using metagenomic methods. The results revealed that CH4 fluxes in grazed and nongrazed plots were -34.10 and -22.82 μg‧m-2‧h-1, respectively. Overall, 23 and 10 species of Types I and II MOB were identified, respectively. Type II MOB comprised the dominant bacteria involved in CH4 uptake, with Methylocystis constituting the dominant taxa. With regard to MPA, 12 species were identified in grazed meadows and 3 in nongrazed meadows, with Methanobrevibacter constituting the dominant taxa. GE decreased the diversity of MPA but increased the relative abundance of dominated species Methanobrevibacter millerae from 1.47 to 4.69%. The proportions of type I MOB, type II MOB, and MPA that were considerably affected by vegetation and soil factors were 68.42, 21.05, and 10.53%, respectively. Furthermore, the structural equation models revealed that soil factors (available phosphorus, bulk density, and moisture) significantly affected CH4 flux more than vegetation factors (grass species number, grass aboveground biomass, grass root biomass, and litter biomass). CH4 flux was mainly regulated by serine and acetate pathways. The serine pathway was driven by soil factors (0.84, p < 0.001), whereas the acetate pathway was mainly driven by vegetation (-0.39, p < 0.05) and soil factors (0.25, p < 0.05). In conclusion, our findings revealed that alpine meadow soil is a CH4 sink. However, GE reduces the CH4 sink potential by altering vegetation structure and soil properties, especially soil physical properties.
Collapse
Affiliation(s)
- Shilin Wang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| | - Xindong Chen
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| | - Wen Li
- Key Laboratory of Development of Forage Germplasm in the Qinghai-Tibetan Plateau of Qinghai Province, Qinghai Academy of Animal Science and Veterinary Medicine of Qinghai University, Xining, China
| | - Wenlong Gong
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Zhengwen Wang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| | - Wenxia Cao
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|