1
|
Zhang D, Chen Q, Xu T, Yin D. Current research status on the distribution and transport of micro(nano)plastics in hyporheic zones and groundwater. J Environ Sci (China) 2025; 151:387-409. [PMID: 39481947 DOI: 10.1016/j.jes.2024.03.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 11/03/2024]
Abstract
Micro(nano)plastics, as an emerging environmental pollutant, are gradually discovered in hyporheic zones and groundwater worldwide. Recent studies have focused on the origin and spatial/temporal distribution of micro(nano)plastics in regional groundwater, together with the influence of their properties and effects of environmental factors on their transport. However, the transport of micro(nano)plastics in the whole hyporheic zone-groundwater system and the behavior of co-existing substances still lack a complete theoretical interpretation. To provide systematic theoretical support for that, this review summarizes the current pollution status of micro(nano)plastics in the hyporheic zone-groundwater system, provides a comprehensive introduction of their sources and fate, and classifies the transport mechanisms into mechanical transport, physicochemical transport and biological processes assisted transport from the perspectives of mechanical stress, physicochemical reactions, and bioturbation, respectively. Ultimately, this review proposes to advance the understanding of the multi-dimensional hydrosphere transport of micro(nano)plastics centered on groundwater, the microorganisms-mediated synergistic transformation and co-transport involving the intertidal circulation. Overall, this review systematically dissects the presence and transport cycles of micro(nano)plastics within the hyporheic zone-groundwater system and proposes prospects for future studies based on the limitations of current studies.
Collapse
Affiliation(s)
- Dongming Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Ameen A, Stevenson ME, Kirschner AKT, Jakwerth S, Derx J, Blaschke AP. Fate and transport of fragmented and spherical microplastics in saturated gravel and quartz sand. JOURNAL OF ENVIRONMENTAL QUALITY 2024; 53:727-742. [PMID: 39162095 DOI: 10.1002/jeq2.20618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/15/2024] [Indexed: 08/21/2024]
Abstract
Microplastics in urban runoff undergo rapid fragmentation and accumulate in the soil, potentially endangering shallow groundwater. To improve the understanding of microplastic transport in groundwater, column experiments were performed to compare the transport behavior of fragmented microplastics (FMPs ∼1-µm diameter) and spherical microplastics (SMPs ∼1-, 10-, and 20-µm diameter) in natural gravel (medium and fine) and quartz sand (coarse and medium). Polystyrene microspheres were physically abraded with glass beads to mimic the rapid fragmentation process. The experiments were conducted at a constant flow rate of 1.50 m day-1 by injecting two pore volumes of SMPs and FMPs. Key findings indicate that SMPs showed higher breakthrough, compared to FMPs in natural gravel, possibly due to size exclusion of the larger SMPs. Interestingly, FMPs exhibited higher breakthrough in quartz sand, likely due to tumbling and their tendency to align with flow paths, while both sizes (larger and smaller relative to FMPs) of SMPs exhibited higher removal in quartz sand. Therefore, an effect due to shape and size was observed.
Collapse
Affiliation(s)
- Ahmad Ameen
- Institute of Hydraulic Engineering and Water Resources Management E222/2, TU Wien, Vienna, Austria
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
| | - Margaret E Stevenson
- Institute of Hydraulic Engineering and Water Resources Management E222/2, TU Wien, Vienna, Austria
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
| | - Alexander K T Kirschner
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
- Institute for Hygiene and Applied Immunology, Water Microbiology, Medical University of Vienna, Vienna, Austria
- Division Water Quality & Health, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Stefan Jakwerth
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
- Institute for Hygiene and Applied Immunology, Water Microbiology, Medical University of Vienna, Vienna, Austria
| | - Julia Derx
- Institute of Hydraulic Engineering and Water Resources Management E222/2, TU Wien, Vienna, Austria
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
| | - Alfred P Blaschke
- Institute of Hydraulic Engineering and Water Resources Management E222/2, TU Wien, Vienna, Austria
- Interuniversity Cooperation Centre (ICC) Water and Health, Vienna, Austria
| |
Collapse
|
3
|
Wu T, Chen Y, Yang Z. 3D pore-scale characterization of colloid aggregation and retention by confocal microscopy: Effects of fluid structure and ionic strength. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170349. [PMID: 38280576 DOI: 10.1016/j.scitotenv.2024.170349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Understanding the mechanisms of colloid transport and retention as well as the spatial distribution of colloids in porous media is an important topic for contamination transport and remediation in subsurface environments. Utilizing advanced three-dimensional visualization experiments, we effectively capture the intricate distribution characteristics of colloids in the 3D pore space and quantify the size of colloid clusters that aggregate at fluid-fluid interfaces and solid surfaces during two-phase flow. Our experimental results reveal the influence of pore-scale events, such as Haines jumps and pinch-off, on colloid retention. Our results also indicate that large drainage rates can facilitate colloid retention on solid surfaces, especially under the condition of high ionic strength. This can be attributed to the migration of colloids from the fluid-fluid interface to the solid surface, propelled by transients in the local fluid structure. The findings reveal a synergistic effect of the ionic strength and hydrodynamic conditions on colloid transport and retention during two-phase flow and provide important insights for predicting the fate and transport of contaminants in soil and groundwater environments involving multiple fluid phases.
Collapse
Affiliation(s)
- Ting Wu
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China; Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Yurun Chen
- Wuhan Britain-China School, Wuhan 430033, China
| | - Zhibing Yang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China; Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
4
|
Liu Z, Bacha AUR, Yang L. Control strategies for microplastic pollution in groundwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122323. [PMID: 37544400 DOI: 10.1016/j.envpol.2023.122323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
Groundwater is the primary source of water that occurs below the earth's surface. However, the advancement in technology and the increasing population, which lead to the discharge of contaminants such as microplastics (MPs), have an adverse impact on the quality of groundwater. MPs are ubiquitous pollutants that are widely found throughout the world. The maximum abundance of MPs is 4 items/L and 15.2 items/L in groundwater at the specific location of China and USA. Various factors can affect the migration of MPs from soil to groundwater. The occurrence of MPs in water causes serious health issues. Therefore, taking appropriate strategies to control MP contamination in groundwater is urgent and important. This review summarizes the current literature on the migration process of MPs from soil to groundwater along with possible methods for the remediation of MP-polluted groundwater. The main objective of the review is to summarize the technical parameters, process, mechanism, and characteristics of various remediation methods and to analyze strategies for controlling MP pollution in groundwater, providing a reference for future research. Possible control strategies for MP pollution in groundwater include two aspects: i) prevention of MPs from entering groundwater; ii) remediation of polluted groundwater with MPs (ectopic remediation and in-situ remediation). Formulating legislative measures, strengthening public awareness and producing more environment-friendly alternatives can be helpful to reduce the production of MPs from the source. Manage plastic waste reasonably is also a good strategy and the most important part of the management is recycling. The shortcomings of the current study and the direction of future research are also highlighted in the review.
Collapse
Affiliation(s)
- Zhongchuang Liu
- Green Intelligence Environmental School, Yangtze Normal University, No. 16, Juxian Avenue, Fuling District, Chongqing, China; Chongqing Multiple-source Technology Engineering Research Center for Ecological Environment Monitoring, Yangtze Normal University, No. 16, Juxian Avenue, Fuling District, Chongqing, China.
| | - Aziz-Ur-Rahim Bacha
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Lei Yang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| |
Collapse
|
5
|
Choudhury A, Simnani FZ, Singh D, Patel P, Sinha A, Nandi A, Ghosh A, Saha U, Kumari K, Jaganathan SK, Kaushik NK, Panda PK, Suar M, Verma SK. Atmospheric microplastic and nanoplastic: The toxicological paradigm on the cellular system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115018. [PMID: 37216859 DOI: 10.1016/j.ecoenv.2023.115018] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
The increasing demand for plastic in our daily lives has led to global plastic pollution. The improper disposal of plastic has resulted in a massive amount of atmospheric microplastics (MPs), which has further resulted in the production of atmospheric nanoplastics (NPs). Because of its intimate relationship with the environment and human health, microplastic and nanoplastic contamination is becoming a problem. Because microplastics and nanoplastics are microscopic and light, they may penetrate deep into the human lungs. Despite several studies demonstrating the abundance of microplastics and nanoplastics in the air, the potential risks of atmospheric microplastics and nanoplastics remain unknown. Because of its small size, atmospheric nanoplastic characterization has presented significant challenges. This paper describes sampling and characterization procedures for atmospheric microplastics and nanoplastics. This study also examines the numerous harmful effects of plastic particles on human health and other species. There is a significant void in research on the toxicity of airborne microplastics and nanoplastics upon inhalation, which has significant toxicological potential in the future. Further study is needed to determine the influence of microplastic and nanoplastic on pulmonary diseases.
Collapse
Affiliation(s)
- Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Paritosh Patel
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Aishee Ghosh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Utsa Saha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Khushbu Kumari
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Saravana Kumar Jaganathan
- School of Engineering, College of Science, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Pritam Kumar Panda
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden.
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
6
|
Xiong X, Yang Z, Hu R, Chen YF. Predicting colloid transport and deposition in an array of collectors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|