1
|
Gao TN, Yang Z, Goed JMS, Zuilhof H, Miloserdov FM. Rim-differentiated pillar[5]arene-modified surfaces for rapid PFOA/PFOS detection. Chem Commun (Camb) 2024; 60:9789-9792. [PMID: 39161305 DOI: 10.1039/d4cc02676d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A new rim-differentiated pillar[5]arene (RD-P5) has been synthesized and immobilized onto an Al2O3 surface for the rapid detection of perfluoroalkyl acids. This P5-Al2O3 surface provides a novel approach for measuring perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) using contact angle measurements, with limits of detection down to 10 ng L-1.
Collapse
Affiliation(s)
- Tu-Nan Gao
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands.
| | - Zhen Yang
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands.
- Imec within OnePlanet Research Center, Bronland 10, 6708 WH Wageningen, The Netherlands
| | - Jesse M S Goed
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands.
- Wetsus, Oostergoweg 4, 8911 MA Leeuwarden, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands.
- School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road 92, 300072 Tianjin, China
| | - Fedor M Miloserdov
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands.
| |
Collapse
|
2
|
Wei X, Liu P, Bai D, Zhang L, Mao H, Zhang W, Chen T, Yin D, Sun T, Zhang Y, Zhang W. Industrializable and pH-tolerant electropositive imidazolium chloride polymer for high-efficiency removal of perfluoroalkyl carboxylic acids from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133095. [PMID: 38056270 DOI: 10.1016/j.jhazmat.2023.133095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/23/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
In recent years, various materials have been used to adsorb and remove perfluoroalkyl compounds from water. However, most of these materials have limited applications due to their high cost, complex synthesis, inadequate selectivity and sensitivity, and, even worse, the possibility of introducing secondary pollution. Here, under mild conditions, we prepared an inexpensive imidazolium chloride and nitrogen-rich polymer (TAGX-Cl) with a high cationic loading rate and a high yield (>82%). The adsorbent exhibits excellent pH tolerance (pH=1-9) and achieves nearly 99.9% removal of nine perfluoroalkyl carboxylic acids (PFCAs) within 120 min. Experimental data and theoretical simulations confirmed that synergistic electrostatic interactions, hydrogen bonds, and P-π interactions control the adsorptive ability of TAGX-Cl. This work provides a practical strategy for PFCAs removal.
Collapse
Affiliation(s)
- Xiaohui Wei
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Pingping Liu
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, PR China
| | - Danyang Bai
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Luyuan Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hongyan Mao
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Wenjing Zhang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Tianqi Chen
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Dan Yin
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Tianhua Sun
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Yanhao Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Wenfen Zhang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China; Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, PR China; Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
3
|
Kang KH, Saifuddin M, Chon K, Bae S, Kim YM. Recent advances in the application of magnetic materials for the management of perfluoroalkyl substances in aqueous phases. CHEMOSPHERE 2024; 352:141522. [PMID: 38401865 DOI: 10.1016/j.chemosphere.2024.141522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Perfluoroalkyl substances (PFASs) are a class of artificially synthesised organic compounds extensively used in both industrial and consumer products owing to their unique characteristics. However, their persistence in the environment and potential risk to health have raised serious global concerns. Therefore, developing effective techniques to identify, eliminate, and degrade these pollutants in water are crucial. Owing to their high surface area, magnetic responsiveness, redox sensitivity, and ease of separation, magnetic materials have been considered for the treatment of PFASs from water in recent years. This review provides a comprehensive overview of the recent use of magnetic materials for the detection, removal, and degradation of PFASs in aqueous solutions. First, the use of magnetic materials for sensitive and precise detection of PFASs is addressed. Second, the adsorption of PFASs using magnetic materials is discussed. Several magnetic materials, including iron oxides, ferrites, and magnetic carbon composites, have been explored as efficient adsorbents for PFASs removal from water. Surface modification, functionalization, and composite fabrication have been employed to improve the adsorption effectiveness and selectivity of magnetic materials for PFASs. The final section of this review focuses on the advanced oxidation for PFASs using magnetic materials. This review suggests that magnetic materials have demonstrated considerable potential for use in various environmental remediation applications, as well as in the treatment of PFASs-contaminated water.
Collapse
Affiliation(s)
- Kyeong Hwan Kang
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Md Saifuddin
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Kangmin Chon
- Department of Environmental Engineering, Kangwon National University, Chuncheon-si, Gangwon Province, 24341, Republic of Korea
| | - Sungjun Bae
- Department of Civil and Environmental Engineering, Konkuk University, Gwangjin-gu, Seou, 05029, Republic of Korea.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
4
|
Zhang M, Zhao Y, Bui B, Tang L, Xue J, Chen M, Chen W. The Latest Sensor Detection Methods for per- and Polyfluoroalkyl Substances. Crit Rev Anal Chem 2024:1-17. [PMID: 38234139 DOI: 10.1080/10408347.2023.2299233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have emerged as a prominent environmental pollutant in recent years, primarily due to their tendency to accumulate and magnify in both the environment and living organisms. The entry of PFASs into the environment can have detrimental effects on human health. Hence, it is crucial to actively monitor and detect the presence of PFASs. The current standard detection method of PFAS is the combination of chromatography and mass spectrometry. However, this requires expensive instruments, extra sample pretreatment steps, complicated operation and long analysis time. As a result, new methods that do not rely on chromatography and mass spectrometry have been developed and applied. These alternative methods mainly include optical and electrochemical sensor methods, which offer great potential in terms of real-time field detection, instrument miniaturization, shorter analysis time, and reduced detection cost. This review provides a summary of recent advancements in PFAS detection sensors. We categorize and explain the principles and mechanisms of these sensors, and compare their limits of detection and sensitivity. Finally, we discuss the future challenges and improvements needed for PFAS sensors, such as field application, commercialization, and other related issues.
Collapse
Affiliation(s)
- Mingyu Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| | - Yanan Zhao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| | - Brian Bui
- Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
| | - Liming Tang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| | - Jiajia Xue
- Beijing Laboratory of Biomedical Materials and State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, China
| | - Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| | - Wei Chen
- Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
- School of CHIPS, Xi'an Jiaotong-Loverpool University, Suzhou, China
| |
Collapse
|
5
|
Cho S, Kim Y. J-Aggregate-Triggering BODIPYs: an Ultrasensitive Chromogenic and Fluorogenic Sensing Platform for Perfluorooctanesulfonate. Chemistry 2023; 29:e202302897. [PMID: 37864280 DOI: 10.1002/chem.202302897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/22/2023]
Abstract
Contamination of water supplies by polyfluoroalkyl substances, notably perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), has serious health and environmental consequences. Therefore, the development of straightforward and effective means of monitoring and removing PFASs is urgently required. In this study, we report a rapid and sensitive method for the detection of PFOS and PFOA in water that rely on the J-aggregate formation of meso-ester-BODIPY dyes. The dye C10-mim, which contains a hydrophilic methylimidazolium group and a hydrophobic alkylated BODIPY, self-assembles in water into weakly green-emissive micellar assemblies. Upon binding to PFOS or PFOA, a spontaneous disassembly and reorganization forms orange-emissive J-aggregates. The rapid formation (≤5 s) of J-aggregates and the accompanying spectral shifts provide a superior sensing performance, with excellent sensitivity (limit of detection=0.18 ppb for PFOS) and distinct chromogenic and fluorogenic "turn-on" responses.
Collapse
Affiliation(s)
- Siyoung Cho
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Youngmi Kim
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| |
Collapse
|
6
|
Research Progress on Up-Conversion Fluorescence Probe for Detection of Perfluorooctanoic Acid in Water Treatment. Polymers (Basel) 2023; 15:polym15030605. [PMID: 36771906 PMCID: PMC9920290 DOI: 10.3390/polym15030605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Perfluorooctanoic acid (PFOA) is a new type of organic pollutant in wastewater that is persistent, toxic, and accumulates in living organisms. The development of rapid and sensitive analytical methods to detect PFOA in environmental media is of great importance. Fluorescence detection has the advantages of high efficiency and low cost, in which fluorescent probes have excellent fluorescence properties, excellent bio-solubility, and remarkable photostability. It is necessary to review the fluorescence detection routes for PFOA. In addition, the up-conversion of fluorescent materials (UCNPs), as fluorescent materials to prepare fluorescent probes with, has significant advantages and also attracts the attention of researchers, however, reviews related to their application in detecting PFOA and comparing them with other routes are rare. Furthermore, there are many strategies to improve the performance of up-conversion fluorescent probes including SiO2 modification and amino modification. These strategies can enhance the detection effect of PFOA. Thus, this work reviews the types of fluorescence detection, the design, and synthesis of UCNPs, their recognition mechanism, properties, and their application progress. Moreover, the development trend and prospects of these detection probes are given.
Collapse
|