1
|
Luo C, Zhang Q, Wang D, Xie H, Zheng S, Huang W, Huang Y, Shi X, Wu K. Tri-iso-butyl phosphate (TiBP) exposure induces neurotoxicity by triggering oxidative stress accompanied by neurotransmitter system disruptions and apoptosis in zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125137. [PMID: 39424049 DOI: 10.1016/j.envpol.2024.125137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/16/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
The current research sheds light on the biological toxicity of organophosphate flame retardants (OPFRs), yet it overlooks the neurotoxicity and potential molecular mechanisms of tris(1,3-dichloro-2-propyl) phosphate (TiBP), a prominent constituent of the OPFRs. To address this, we utilized zebrafish larvae as a model to investigate TiBP's acute toxicity and neurotoxic effects, along with the associated molecular pathways. Our findings revealed that the 96 h and 120 h LC50 values for TiBP were 56.51 mg/L and 48.85 mg/L, respectively. Gradient exposure based on the 120 h LC50 demonstrated that TiBP induced developmental toxicity, characterized by elevated heart rate, reduced body length, and diminished eye distance. Additionally, a decrease in swimming activity was observed in the light test, along with the inhibition of the neuro crest cell development in Tg (HuC:eGFP) and Tg (sox10: eGFP) zebrafish larvae following TiBP exposure, as well as the alterations of neurogenesis and ACh-related genes. Expression of key neurodevelopment genes, including mbpa, gap43, nestin, ngfra, was significantly downregulated. Furthermore, heightened anxiety-like behaviors in open field and phototaxis tests were observed, concomitant with neurotransmitter imbalances. Specifically, there was an increase in DA levels, a decrease in GABA, and an upregulation of AChE activity. These disruptions were primarily mediated through transcriptional dysregulation of neurotransmitter synthesis, transport, and reception. Upon exposure to TiBP, zebrafish larvae exhibited a concentration-dependent increase in both ROS level and apoptosis. An upregulation of antioxidant enzymes and their transcription levels indicated the presence of oxidative stress in the larvae. The induction of ddit3 was congruent with the observed apoptosis, suggesting that it may be triggered by oxidative stress via the ERs-CHOP pathway. In summary, our study indicates that oxidative stress is a pivotal molecular event in the neurotoxicity induced by TiBP, implicating the disruption of the GABAergic, dopaminergic, and cholinergic systems, as well as triggering apoptosis.
Collapse
Affiliation(s)
- Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Dinghui Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Han Xie
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Shukai Zheng
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yanhong Huang
- Mental Health Center of Shantou University, Shantou, Guangdong, China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
2
|
Wang W, Sun B, Luo D, Chen X, Yao M, Zhang A. Neurotransmitter Metabolism in Arsenic Exposure-Induced Cognitive Impairment: Emerging Insights and Predictive Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19165-19177. [PMID: 39423902 DOI: 10.1021/acs.est.4c06269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Scholars have long been interested in the association between arsenic (As) exposure and neurological disorders; however, existing systematic epidemiological investigations are insufficient and lack the inclusion of diagnostic or predictive biological markers. This study sought to evaluate the association between As exposure and cognitive impairment and identify potential biomarkers by developing predictive models. Here, we found that logarithm (Ln)-transformed urinary As concentrations were negatively linearly related to the mini-mental state examination (MMSE) score exposure-response curves. Subsequently, we identified a unique plasma neurometabolite profile in subjects exposed to As compared with the reference group. Further analyses showed that tryptophan, tyrosine, dopamine, epinephrine, and homovanillic acid were all significantly associated with both urinary As concentrations and MMSE scores. Notably, the association between As exposure and MMSE scores was partly mediated by tryptophan, tyrosine, dopamine, and epinephrine. Importantly, an unprecedented prediction model utilizing neurotransmitters was established to assess the risk of cognitive impairment due to As exposure. A 91.1% consistency rate was found between the predicted and the actual probabilities. Additionally, machine learning models also produced highly accurate predictions. Overall, this study revealed a dose-dependent cognitive decline in As-exposed adults accompanied by a disturbance in the signature of neurotransmitter metabolites, offering new predictive insights.
Collapse
Affiliation(s)
- Wenjuan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| | - Daopeng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| | - Xiong Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| | - Maolin Yao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
3
|
Di W, Li Y, Zhang L, Zhou Q, Fu Z, Xi S. The hippo-YAP1/HIF-1α pathway mediates arsenic-induced renal fibrosis. ENVIRONMENTAL RESEARCH 2024; 257:119325. [PMID: 38844032 DOI: 10.1016/j.envres.2024.119325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Epidemiological evidence reveals that arsenic increases the risk of chronic kidney disease (CKD) in humans, but its mechanism of action has so far been unclear. Fibrosis is the manifestation of end-stage renal disease. Hypoxia is recognized as a vital event accompanying the progression of renal fibrosis. KM mice were exposed to 0, 20, 40, and 80 mg/L NaAsO2 for 12 weeks. HK-2 cells were treated with 1 μM NaAsO2 for 4 weeks. The results showed that arsenic increased the expression of hypoxia-inducible factor 1α (HIF-1α) (P < 0.05), which is involved in inorganic arsenic-induced renal fibrosis. The Hippo signaling pathway is the upstream signal of HIF-1α and the kinase cascade of Large tumor suppressor kinase 1 (LATS1) and Yes-associated protein 1 (YAP1) is the heart of the Hippo pathway. Our results showed that protein expressions of LATS1 and phosphorylated YAP1 were decreased, and dephosphorylated YAP1 expression increased in arsenic-treated mouse kidneys and human HK-2 cells (P < 0.05). Our research manifested that arsenic treatment suppressed the Hippo signaling and induced high expression of YAP1 into the nucleus. We also found that YAP1 was involved in arsenic-induced renal fibrosis by forming a complex with HIF-1α and maintaining HIF-1α stability. Our findings indicate that YAP1 is a potential target for molecular-based therapy for arsenic-mediated renal fibrosis.
Collapse
Affiliation(s)
- Wei Di
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenicy, Shenyang, Liaoning, 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Yan Li
- Institute of Foreign Languages, China Medical University, Shenyang, Liaoning, 110122, China
| | - Lei Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenicy, Shenyang, Liaoning, 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Qing Zhou
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenicy, Shenyang, Liaoning, 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Zhushan Fu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenicy, Shenyang, Liaoning, 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Shuhua Xi
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenicy, Shenyang, Liaoning, 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
4
|
Yan M, Chen X, Xue J, Liu H, Yang J. Reconstruction of Historical Metal Backgrounds in Lacustrine Environments of China Using an Anodonta woodiana "Specimen Bank". BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:78. [PMID: 38796607 DOI: 10.1007/s00128-024-03906-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/16/2024] [Indexed: 05/28/2024]
Abstract
Anodonta woodiana samples from Xidong Water Works and Mashan in Taihu Lake, Yiyang near Dongting Lake, and Taiping Harbor in Gehu Lake preserved in a "specimen bank" established for the "Freshwater Mussel Watch" monitoring program were used to determine the historical metal backgrounds from different waters in the present study. The elements Co, Ni, Mo, Cd, Al, Cr, Mn, Fe, Cu, Zn, As, Ba, and Pb were determined using A. woodiana from four lacustrine sites. The results showed that Al, Cr, Mn, Fe, Cu, Zn, As, Ba, and Pb were all detected, whereas Co, Ni, Mo, and Cd were below the detection limits of 0.0165, 0.0106, 0.0189 and 0.0182 µg kg- 1, respectively. In particular, A. woodiana was noted to be an unusual Mn hyperaccumulator (ranged from 5124.09 to 13015.47 µg g- 1). The results of discriminant analysis showed that the four water samples could be accurately separated. This difference has the potential to infer the background difference of heavy metal pollution in different lacustrine habitats.
Collapse
Affiliation(s)
- Mingjun Yan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Xiubao Chen
- Laboratory of Fishery Microchemistry, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Junren Xue
- Laboratory of Fishery Microchemistry, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Hongbo Liu
- Laboratory of Fishery Microchemistry, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jian Yang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Laboratory of Fishery Microchemistry, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
5
|
Zhu Y, Yang Q, Gu J, Chen Z, Jing N, Jin T, Lin J, Wang X, Hu J, Ji G, An Y. 'Environmental standard limit concentration' arsenic exposure is associated with anxiety, depression, and autism-like changes in early-life stage zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133953. [PMID: 38461670 DOI: 10.1016/j.jhazmat.2024.133953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
Arsenic is a worldwide environmental pollutant that can impair human health. Previous studies have identified mental disorders induced by arsenic, but the environmental exposure concentrations in the early life stages associated with these disorders are poorly understood. In the present study, early-life stage zebrafish were used to explore the effects on mental disorders under 'environmental standard limit concentrations' arsenic exposures of 5, 10, 50, 150, and 500 μg/L. The results showed that arsenic exposure at these concentrations changed the locomotor behavior in larval zebrafish and was further associated with anxiety, depression, and autism-like behavior in both larval and juvenile zebrafish. Changes were noted at benchmark dose limit (BMDL) concentrations as low as 0.81 μg/L. Transcriptomics showed that immediate early genes (IEGs) fosab, egr1, egr2a, ier2b, egr3, and jund were decreased after arsenic exposure in larval and juvenile zebrafish. Nervous system impairment and anxiety, depression, and autism-like behaviors in early-life stage zebrafish at 'environmental standard limit concentrations' may be attributed to the downregulation of IEGs. These findings in zebrafish provided new experimental support for an arsenic toxicity threshold for mental disorders, and they suggest that low levels of environmental chemicals may be causative developmental factors for mental disorders.
Collapse
Affiliation(s)
- Yuanhui Zhu
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Qianlei Yang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Zhicheng Chen
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Nan Jing
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Tingxu Jin
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China; School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Jiayuan Lin
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Xin Wang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Jingwen Hu
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China.
| | - Yan An
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
6
|
Pang S, Han B, Wu P, Yang X, Liu Y, Li J, Lv Z, Zhang Z. Resveratrol alleviates inorganic arsenic-induced ferroptosis in chicken brain via activation of the Nrf2 signaling pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105885. [PMID: 38685251 DOI: 10.1016/j.pestbp.2024.105885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/09/2024] [Accepted: 03/23/2024] [Indexed: 05/02/2024]
Abstract
Inorganic arsenic (iAs) is a well-recognized environmental pollutant that induces severe brain injury in humans and animals. The antioxidant, anti-inflammatory, and anti-ferroptotic effects of resveratrol (Res) were demonstrated in multiple animal experiments. In order to investigate the protective effect of Res on iAs-induced chicken brain injury, the 40 chickens (19-d-old, female) brain injury model was established by oral administration of iAs (30 mg/L NaAsO2) for 6 weeks. All chickens had free access to both food and water during the experiment. The biochemical indices, hematoxylin-eosin staining, and related protein levels of oxidative stress, inflammation and ferroptosis were then determined. Our results indicated that Res (1000 mg/kg) alleviated the iAs-induced brain injury after 6 weeks of oral administration, primarily by reducing the interleukin-1β mRNA expression and nuclear factor kappa B and malondialdehyde level, and increasing the antioxidant enzyme activity and the mRNA expression of nuclear factor erythroid 2-related factor 2 (Nrf2). Taken together, our study demonstrates that Res effectively inhibits iAs-induced oxidative stress and ferroptosis by mediating the Nrf2 signaling pathway, thereby alleviating iAs-induced brain injury in chickens. This is the first time that the amelioration effects of Res on the iAs-induced brain have been investigated from multiple perspectives.
Collapse
Affiliation(s)
- Shan Pang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Biqi Han
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Xu Yang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Yunfeng Liu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China.
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China.
| |
Collapse
|
7
|
Ma H, Yang W, Li Y, Li J, Yang X, Chen Y, Ma Y, Sun D, Sun H. Effects of sodium arsenite exposure on behavior, ultrastructure and gene expression of brain in adult zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116107. [PMID: 38382348 DOI: 10.1016/j.ecoenv.2024.116107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Arsenic, a common metal-like substance, has been demonstrated to pose potential health hazards and induce behavioral changes in humans and rodents. However, the chronic neurotoxic effects of arsenic on aquatic animals are still not fully understood. This study aimed to investigate the effects of arsenic exposure on adult zebrafish by subjecting 3-month-old zebrafish to three different sodium arsenite water concentrations: 0 μg/L (control group), 50 μg/L, and 500 μg/L, over a period of 30 days. To assess the risk associated with arsenic exposure in the aquatic environment, behavior analysis, transmission electron microscopy techniques, and quantitative real-time PCR were employed. The behavior of adult zebrafish was evaluated using six distinct tests: the mirror biting test, shoaling test, novel tank test, social preference test, social recognition test, and T maze. Following the behavioral tests, the brains of zebrafish were dissected and collected for ultrastructural examination and gene expression analysis. The results revealed that sodium arsenite exposure led to a significant reduction in aggression, cohesion, social ability, social cognition ability, learning, and memory capacity of zebrafish. Furthermore, ultrastructure and genes regulating behavior in the zebrafish brain were adversely affected by sodium arsenite exposure.
Collapse
Affiliation(s)
- Hao Ma
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| | - Wenjing Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| | - Yang Li
- The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu Distinct, Nanchang, Jiangxi 330006, China.
| | - Jing Li
- Department of Electron Microscopy Center, Faculty of Basic Medical Science, Harbin Medical University, Harbin, China.
| | - Xiyue Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| | - Yunyan Chen
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China.
| | - Yifan Ma
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China.
| | - Dianjun Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| | - Hongna Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| |
Collapse
|
8
|
Zhao W, Chen Y, Hu N, Long D, Cao Y. The uses of zebrafish (Danio rerio) as an in vivo model for toxicological studies: A review based on bibliometrics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116023. [PMID: 38290311 DOI: 10.1016/j.ecoenv.2024.116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
An in vivo model is necessary for toxicology. This review analyzed the uses of zebrafish (Danio rerio) in toxicology based on bibliometrics. Totally 56,816 publications about zebrafish from 2002 to 2023 were found in Web of Science Core Collection, with Toxicology as the top 6 among all disciplines. Accordingly, the bibliometric map reveals that "toxicity" has become a hot keyword. It further reveals that the most common exposure types include acute, chronic, and combined exposure. The toxicological effects include behavioral, intestinal, cardiovascular, hepatic, endocrine toxicity, neurotoxicity, immunotoxicity, genotoxicity, and reproductive and transgenerational toxicity. The mechanisms include oxidative stress, inflammation, autophagy, and dysbiosis of gut microbiota. The toxicants commonly evaluated by using zebrafish model include nanomaterials, arsenic, metals, bisphenol, and dioxin. Overall, zebrafish provide a unique and well-accepted model to investigate the toxicological effects and mechanisms. We also discussed the possible ways to address some of the limitations of zebrafish model, such as the combination of human organoids to avoid species differences.
Collapse
Affiliation(s)
- Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Yuna Chen
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, PR China.
| | - Dingxin Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| |
Collapse
|
9
|
Guo X, Zhang R, Li C, Duan M, Cao N, Jin Q, Chen X, Li L, Li X, Pang S. Environmental levels of azoxystrobin disturb male zebrafish behavior: Possible roles of oxidative stress, cholinergic system, and dopaminergic system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115744. [PMID: 38086263 DOI: 10.1016/j.ecoenv.2023.115744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/05/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024]
Abstract
A widely applied pesticide of azoxystrobin, is increasingly detected in the water environment. Concern has been raised against its potential detriment to aquatic ecosystems. It has been shown that exposure to azoxystrobin interfere with the locomotor behavior of zebrafish larvae. This study aims to investigate whether exposure to environmental levels of azoxystrobin (2 μg/L, 20 μg/L, and 200 μg/L) changes the behavior of male adult zebrafish. Herein, we evaluated behavioral response (locomotor, anxiety-like, and exploratory behaviors), histopathology, biochemical indicators, and gene expression in male adult zebrafish upon azoxystrobin exposure. The study showed that exposure to azoxystrobin for 42 days remarkably increased the locomotor ability of male zebrafish, resulted in anxiety-like behavior, and inhibited exploratory behavior. After treatment with 200 μg/L azoxystrobin, vasodilatation, and congestion were observed in male zebrafish brains. Exposure to 200 μg/L azoxystrobin notably elevated ROS level, MDA concentration, CAT activity, and AChE activity, while inhibiting SOD activity, GPx activity, ACh concentration, and DA concentration in male zebrafish brains. Moreover, the expression levels of genes related to the antioxidant, cholinergic, and dopaminergic systems were significantly changed. This suggests that azoxystrobin may interfere with the homeostasis of neurotransmitters by causing oxidative stress in male zebrafish brains, thus affecting the behavioral response of male zebrafish.
Collapse
Affiliation(s)
- Xuanjun Guo
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Ruihua Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Changsheng Li
- Institute of Cultural Heritage and History of science & Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Manman Duan
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Niannian Cao
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Qian Jin
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xuefeng Li
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Sen Pang
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Chen S, Wang X, Ye X, Qin Y, Wang H, Liang Z, Zhu L, Zhou L, Martyniuk CJ, Yan B. Dopaminergic and serotoninergic neurotoxicity of lanthanide phosphate (TbPO 4) in developing zebrafish. CHEMOSPHERE 2023; 340:139861. [PMID: 37597622 DOI: 10.1016/j.chemosphere.2023.139861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Rare earth elements (REEs) are exploited for global use in manufacturing. Such activities result in their release into the environment and the transformation into more stable phosphate deposition. The objective of this study was to evaluate molecular and behavioral changes of zebrafish exposed to the synthesized terbium phosphate (TbPO4) at concentrations of 10, 20, and 50 mg/L and to determine its potential for neurotoxicity. Metabolomics related to neurotransmitters, and assessment of transcripts and proteins were conducted to uncover the molecular mechanisms underlying TbPO4 with emphasis on neurotransmitter systems. Exposure to 20 mg/L TbPO4 induced larval hyperactivity and perturbed the cholinergic system in zebrafish. Based on metabolomics related to neurotransmitters, dopamine (DA), serotonin (5-HT), and many of their precursors and metabolites were decreased in abundance by TbPO4. In addition, the expression levels of transcripts related to the synthesis, transport, receptor binding, and metabolism of DA and 5-HT were analyzed at the mRNA and protein levels. Transcript and protein levels for tyrosine hydroxylase (TH), the rate-limiting enzyme for DA synthesis, were down-regulated in larval fish. Monoamine oxidase (MAO), an enzyme that catabolizes monoamines DA and 5-HT, was also reduced in mRNA abundance. We hypothesize that DA synthesis and monoamine metabolism are associated with behavioral alterations. This study elucidates putative mechanisms and exposure risks to wildlife and humans by characterizing phosphatic REE-induced neurotoxicity in developing zebrafish.
Collapse
Affiliation(s)
- Siying Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Xiaohong Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Xiaolin Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yingju Qin
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Haiqing Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Zhenda Liang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Lishan Zhu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Li Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences in Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|