1
|
Wang L, Wang Q, Yao Y, Zhou J, Cai X, Dai T, Song C, Li Y, Li F, Meng T, Sheng H, Guo P, Zhang Q, Zhang X. Critical windows for exposure to chemical composition of ambient particulate matter and human semen quality decline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176991. [PMID: 39433225 DOI: 10.1016/j.scitotenv.2024.176991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/26/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Critical windows for exposure to chemical components of particulate matter (PM <2.5 μm in diameter [PM2.5]) associated with the human semen quality decline remain unclear. OBJECTIVES To address this gap, we developed a new analytical framework by integrating a Linear Mixed Model (LMM) with subject- and center-specific intercepts and a Distributed Lag Model (DLM) to fully account for correlations between finely vulnerable exposure windows based on complete profile of the spermatogenesis cycle. METHODS We constructed a multicenter cohort involving 33,234 sperm donors with 78,952 semen samples covering 6 representative regions across China from 2014 to 2020 to investigate the week-scale critical windows for the exposure. Daily exposure to PM2.5 chemical components of donors was derived from grid data based on 1-km spatial resolution surface measurements. RESULTS Decreased sperm count was significantly associated with NO3- and SO42- at 9-10 weeks (e.g., β: -0.05 %, 95%CI: [-0.10 %, -0.00 %] at the 9th week) and 0-2 weeks (e.g., β: -0.66 %, 95%CI: [-1.24 %, -0.07 %] at the 1st week), respectively. Critical windows of progressive motility decline were 0-10 weeks for BC (e.g., β: -0.07 %, 95%CI: [-0.11 %, -0.03 %] at the 5th week), Cl- at 1-4 weeks (e.g., β: -2.21 %, 95%CI: [-3.77 %, -0.66 %] at the 2nd week), 0-6 weeks and 9-10 weeks for NO3- (e.g., β: -0.05 %, 95%CI: [-0.09 %, -0.01 %] at the 4th week), 1-3 weeks and the 8th week for NH4+ (e.g., β: -0.06 %, 95%CI: [-0.11 %, -0.01 %] at the 2nd week). Total motility is significantly negatively associated with BC at entire windows, Cl- at 0-3 weeks, the 5th week and 9-10 weeks. CONCLUSIONS There are week-scale vulnerable windows of exposure to PM2.5 chemical components for human semen quality. This highlights the need for more targeted pollution control strategies addressing PM2.5 and its chemical components.
Collapse
Affiliation(s)
- Lingxi Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Qiling Wang
- National Health Commission Key Laboratory of Male Reproduction and Genetics, Guangzhou, China; Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), China
| | - Yunchong Yao
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Jiayi Zhou
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Xiaoyan Cai
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Tingting Dai
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Chunying Song
- Human Sperm Bank, The Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Yushan Li
- Human Sperm Bank, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fuping Li
- Human Sperm Bank, The Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Tianqing Meng
- Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Human Sperm Bank, Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiqiang Sheng
- Human Sperm Bank, The Zhejiang Provincial Maternal and Child and Reproductive Health Care Center, Hangzhou, China
| | - Pi Guo
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China.
| | - Qingying Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China.
| | - Xinzong Zhang
- National Health Commission Key Laboratory of Male Reproduction and Genetics, Guangzhou, China; Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), China.
| |
Collapse
|
2
|
Fan W, Zhu Z, Liu X, Zhang H, Qiu Y, Yin D. Effect of nitrogen oxides and sulfur oxides to triphenyl phosphate degradation and cytotoxicity on surface of different transition metal salts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174422. [PMID: 38964400 DOI: 10.1016/j.scitotenv.2024.174422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Nitrogen oxides and sulfur oxides, as the dominant toxic gases in the atmosphere, can induce severe human health problems under the composite pollutant conditions. Currently the effect of nitrogen or sulfur oxides in atmospheric environment to the degradation and cytotoxicity of triphenyl phosphate (TPhP) on atmospheric particle surfaces still remain poorly understood. Hence, laboratory simulation methods were used in this study to investigate the effect and related mechanism. First, particle samples were prepared with the TPhP coated on MnSO4, CuSO4, FeSO4 and Fe2(SO4)3 surface. The results showed that, when nitrogen or sulfur oxides were present, more significant TPhP degradation on all samples can be observed under both light and dark conditions. The results proved nitrogen oxides and sulfur oxides were the vital influence factors to the degradation of TPhP, which mainly promoted the OH generation in the polluted atmosphere. The mechanism study indicated that diphenyl hydrogen phosphate (DPhP) and OH-DPhP were two main stable degradation products. These degradation products originated from the phenoxy bond cleavage and hydroxylation of TPhP caused by hydroxyl radicals. In addition, no TPhP related organosulfates (OSs) or organic nitrates (ON) formation were observed. Regarding the cytotoxicity, all the particles can induce more significant cellular injury and apoptosis of A549 cells, which may be relevant to the adsorbed nitrogen oxides or sulfur oxides on particles surfaces. The superfluous reactive oxygen species (ROS) generation was the possible reason of cytotoxicity. This research can supply a comprehensive understanding of the promoting effect of nitrogen and sulfur oxides to TPhP degradation and the composite cytotoxicity of atmospheric particles.
Collapse
Affiliation(s)
- Wulve Fan
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Zhiliang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China.
| | - Xiaochang Liu
- School of Urban and Regional Science, Shanghai University of Finance and Economics, 777 Guoding Road, Shanghai, China
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| |
Collapse
|
3
|
Zhang Y, Liu J, Hu M, Chai D, Zhang F, Yin T, Ye P, Fang Z, Zhang Y. The relationship between air pollution and the occurrence of hypertensive disorders of pregnancy: Evidence from a study in Wuhan, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116933. [PMID: 39226864 DOI: 10.1016/j.ecoenv.2024.116933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
Ambient air pollution has been reported to be a risk factor for hypertensive disorders of pregnancy (HDP). Past studies have reported supportive evidence, but evidence from China is scarce and does not integrate the different periods of the pregnancy course. In this study, 1945 pregnant women with HDP and healthy pregnancies between 2016 and 2022 from the Renmin Hospital of Wuhan University registry network database were analysed. The geographic information, biological information and demographic information of the case were fused in the analysis. Machine learning methods were used to obtain the weight of the variable. Then, we used the generalized linear mixed model to evaluate the relationship between increased exposure to each pollutant at different periods of HDP and examined it in different groups. The results showed that SO2 had the predominate impact (12.65 %) on HDP compared with other air pollutants. SO2 exposure was associated with an increased risk of HDP. Increased unit SO2 concentrations were accompanied by an increased risk of HDP (OR = 1.33, 95 % CI: 1.13, 1.566), and the susceptible window for this effect was mainly in the first trimester (OR = 1.242, 95 % CI: 1.092, 1.412). In addition, SO2 exposure was associated with an increased risk of HDP in urban maternity (OR = 1.356, 95 % CI: 1.112, 1.653), obese maternity (OR = 3.58, 95 % CI: 1.608, 7.971), no higher education maternity (OR = 1.348, 95 % CI: 1.065, 1.706), nonzero delivery maternity (OR = 1.981, 95 % CI: 1.439, 2.725), maternal with first time maternity (OR = 1.247, 95 % CI: 1.007, 1.544) and other groups. In summary, SO2 exposure in early pregnancy is one of the risk factors for HDP, and the increased risk of HDP due to increased SO2 exposure may be more pronounced in obese, urban, low-education, and nonzero delivery populations.
Collapse
Affiliation(s)
- Yuying Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jianfeng Liu
- The State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, Hubei, China
| | - Min Hu
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dongyue Chai
- The State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, Hubei, China
| | - Feng Zhang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Peng Ye
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Zhixiang Fang
- The State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, Hubei, China.
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Cai K, Wang L, Tong Y, Pu X, Guo T, Xu H, Xie J, Wang L, Bai T. Negative association of atmospheric pollutants with semen quality: A cross-sectional study in Taiyuan, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116941. [PMID: 39208577 DOI: 10.1016/j.ecoenv.2024.116941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND In recent decades, the quality of male semen has decreased worldwide. Air pollution has been linked to lower semen quality in several studies. However, the effects of atmospheric pollutants on different semen characteristics have not always been consistent. The aim of this study was to investigate the association between the Air Quality Index (AQI) and six atmospheric pollutants (PM2.5, PM10, SO2, NO2, CO, and O3), semen quality, and their key exposure window periods. METHODS This study included 1711 semen samples collected at the reproductive clinics of the First Affiliated Hospital of Shanxi Medical University in Taiyuan, Shanxi, China, from October 10, 2021, to September 30, 2022. We evaluated the association of AQI and six atmospheric pollutants with semen quality parameters throughout sperm development and three key exposure windows in men using single-pollutant models, double-pollutant models, and subgroup analyses of semen quality-eligible groups. RESULTS Both the single-pollutant model and subgroup analyses showed that PM, CO, and O3 levels were negatively correlated with total and progressive motility. At 70-90 d before semen collection, CO exposure and semen volume (β =-1.341, 95 % CI: -1.805, -0.877, P <0.001), total motility (β =-2.593, 95 % CI: -3.425, -1.761, P <0.001), and progressive motility (β =-4.658, 95 % CI: -5.556, -3.760, P <0.001) were negatively correlated. At 0-9 days before semen collection, CO was negatively correlated with normal morphology (β =-3.403, 95 % CI: -5.099, -1.708, P <0.001). Additionally, the AQI was adversely associated with total and progressive motility in subgroup analyses of the semen quality-eligible groups. CONCLUSIONS During the entire sperm development process, multiple air pollutants were determined to have an adverse correlation with semen quality parameters. AQI was significant marker for the combined effects of various atmospheric pollutants on male reproductive health.
Collapse
Affiliation(s)
- Ke Cai
- Department of Child and Adolescents Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Li Wang
- Department of Child and Adolescents Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China; Center for Early Childhood Development, Shanxi Medical University, Taiyuan 030001, China
| | - Yujun Tong
- Department of Pathology, the First Clinical School of Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Xin Pu
- Department of Child and Adolescents Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Tingyu Guo
- Department of Child and Adolescents Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Hexiang Xu
- Department of Pathology, the First Clinical School of Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Jialin Xie
- Department of Pathology, the First Clinical School of Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Liyan Wang
- Fenyang Medical College, Shanxi Medical University, Luliang 032200, China
| | - Tao Bai
- Department of Child and Adolescents Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; Department of Pathology, the First Clinical School of Medicine, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
5
|
Dai X, Liu G, Pan C, Li F, Liu Y, Liu J, Chen G, Zhang M, Fei Q, Zheng J, Huang H, Wu Z. Individual and joint associations of air pollutants exposure with semen quality: A retrospective longitudinal study in Wenzhou, China. Int Arch Occup Environ Health 2024; 97:901-913. [PMID: 39060503 DOI: 10.1007/s00420-024-02095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE The impact of air pollution on semen quality has been confirmed, yet the joint effect remains unclear. We evaluate the individual and joint associations of particulate (PM2.5 and PM10) and gaseous pollutants (NO2, SO2, O3 and CO) with semen quality. METHODS We included 5,114 men in this study from 2014 to 2022. The individual and joint associations were measured by multiple linear regression models. RESULTS Sperm motility and semen volume were inversely associated with pollutant concentrations during every stage of sperm development, especially at lag days 0-9 and 10-14 (all P < 0.05). Stratified analyses showed that the study pollutants (except CO) had a positive effect on semen concentration during the stage of sperm development, especially in spring and autumn, while a decreased total sperm number was associated with CO (all P < 0.05). However, joint associations of particulate and gaseous pollutants with semen quality parameters were not statistically significant (all P > 0.05). CONCLUSIONS During all stages of sperm development, particulate and gaseous pollutants had individual negative impacts on sperm motility and semen volume, and these impacts were less pronounced in spring and autumn. Our findings highlight the importance and necessity of reducing the exposure to pollutants especially in the critical stage of sperm development to improve semen quality.
Collapse
Affiliation(s)
- Xuchao Dai
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Guangyuan Liu
- School of Public Health, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Chengshuang Pan
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Feidi Li
- School of Public Health, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Yawen Liu
- School of Public Health, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Jiaxin Liu
- School of Public Health, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Gang Chen
- Hospital Infection Control Management Department, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Mengqi Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qianjin Fei
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jiujia Zheng
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hong Huang
- School of Public Health, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou, 325035, China.
| | - Zhigang Wu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, 325000, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
| |
Collapse
|
6
|
Shi Y, Zhang Y, Yuan K, Han Z, Zhao S, Zhang Z, Cao W, Li Y, Zeng Q, Sun S. Exposure to ambient ozone and sperm quality among adult men in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116753. [PMID: 39083872 DOI: 10.1016/j.ecoenv.2024.116753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Limited evidence exists regarding the association between ozone exposure and adverse sperm quality. We aimed to assess the association between ozone exposure and sperm quality, and identify susceptible exposure windows. METHODS We recruited 32,541 men aged between 22 and 65 years old attending an infertility clinic in Wuhan, Hubei Province, China from 2014 to 2020. Ozone data were obtained from a satellite-based spatiotemporal model. Generalized linear models were used to estimate the association between ozone exposure and sperm quality parameters, including sperm concentration, sperm count, sperm total motility, and sperm progressive motility during the entire stage of sperm development (0-90 days before ejaculation) and three crucial stages (0-9 days, 10-14 days and 70-90 days before ejaculation). Stratified analyses were performed to evaluate whether associations varied by age, body mass index, and education levels. RESULTS The final analysis included 27,854 adult men. A 10 μg/m3 increase in ozone concentrations during the entire stage of sperm development was associated with a -4.17 % (95 % CI: -4.78 %, -3.57 %) decrease in sperm concentration, -6.54 % (95 % CI: -8.03 %, -5.60 %) decrease in sperm count, -0.50 % (95 % CI: -0.66 %, -0.34 %) decrease in sperm total motility, and -0.07 % (95 % CI: -0.22 %, 0.09 %) decrease in sperm progressive motility. The associations were stronger during 70-90 days before ejaculation and among men with middle school and lower education for sperm concentration. CONCLUSIONS Ozone exposure was associated with decreased sperm quality among Chinese adult men attending an infertility clinic. These results suggest that ozone may be a risk factor contributing to decreased sperm quality in Chinese men.
Collapse
Affiliation(s)
- Yadi Shi
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yangchang Zhang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Kun Yuan
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ze Han
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Shi Zhao
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhenyu Zhang
- Department of Global Health, Peking University School of Public Health, Beijing, China; Institute for Global Health and Development, Peking University, Beijing 100191, China
| | - Wangnan Cao
- Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing 100191, China
| | - Yufeng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue, Wuhan, Hubei 1095, China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
7
|
Shen Z, Zhang F, Guo Z, Qu R, Wei Y, Wang J, Zhang W, Xing X, Zhang Y, Liu J, Tang D. Association between air pollution and male sexual function: A nationwide observational study in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134010. [PMID: 38492404 DOI: 10.1016/j.jhazmat.2024.134010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
This study aimed to explore the associations between air pollution and male sexual function. A total of 5047 male subjects in China were included in this study. The average air pollution exposure (PM2.5, PM10, SO2, CO, NO2, and O3) for the preceding 1, 3, 6, and 12 months before the participants' response was assessed. Male sexual function was evaluated using the International Index of Erectile Function-5 (IIEF-5) and the Premature Ejaculation Diagnostic Tool (PEDT). Generalized linear models were utilized to explore the associations between air pollution and male sexual function. K-prototype algorithm was conducted to identify the association among specific populations. Significant adverse effects on the IIEF-5 score were observed with NO2 exposure during the preceding 1, 3, and 6 months (1 m: β = -5.26E-05; 3 m: β = -4.83E-05; 6 m: β = -4.23E-05, P < 0.05). PM2.5 exposure during the preceding 12 months was found to significantly negatively affect the PEDT after adjusting for confounding variables. Our research indicated negative correlations between air pollutant exposures and male sexual function for the first time. Furthermore, these associations were more pronounced among specific participants who maintain a normal BMI, exhibit extroverted traits, and currently engage in smoking and alcohol consumption.
Collapse
Affiliation(s)
- Ziyuan Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Feng Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Zihan Guo
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Rui Qu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yiqiu Wei
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Jingxuan Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Weiqian Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Xing Xing
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China.
| | - Jue Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute for Global Health and Development, Peking University, Beijing 100871, China; Ministry of Education, Key Laboratory of Epidemiology of Major Diseases, Peking University, Beijing 100083, China.
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China.
| |
Collapse
|
8
|
Omolaoye TS, Skosana BT, Ferguson LM, Ramsunder Y, Ayad BM, Du Plessis SS. Implications of Exposure to Air Pollution on Male Reproduction: The Role of Oxidative Stress. Antioxidants (Basel) 2024; 13:64. [PMID: 38247488 PMCID: PMC10812603 DOI: 10.3390/antiox13010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 01/23/2024] Open
Abstract
Air pollution, either from indoor (household) or outdoor (ambient) sources, occurs when there is presence of respirable particles in the form of chemical, physical, or biological agents that modify the natural features of the atmosphere or environment. Today, almost 2.4 billion people are exposed to hazardous levels of indoor pollution, while 99% of the global population breathes air pollutants that exceed the World Health Organization guideline limits. It is not surprising that air pollution is the world's leading environmental cause of diseases and contributes greatly to the global burden of diseases. Upon entry, air pollutants can cause an increase in reactive oxygen species (ROS) production by undergoing oxidation to generate quinones, which further act as oxidizing agents to yield more ROS. Excessive production of ROS can cause oxidative stress, induce lipid peroxidation, enhance the binding of polycyclic aromatic hydrocarbons (PAHs) to their receptors, or bind to PAH to cause DNA strand breaks. The continuous and prolonged exposure to air pollutants is associated with the development or exacerbation of pathologies such as acute or chronic respiratory and cardiovascular diseases, neurodegenerative and skin diseases, and even reduced fertility potential. Males and females contribute to infertility equally, and exposure to air pollutants can negatively affect reproduction. In this review, emphasis will be placed on the implications of exposure to air pollutants on male fertility potential, bringing to light its effects on semen parameters (basic and advanced) and male sexual health. This study will also touch on the clinical implications of air pollution on male reproduction while highlighting the role of oxidative stress.
Collapse
Affiliation(s)
- Temidayo S. Omolaoye
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates;
| | - Bongekile T. Skosana
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7602, South Africa; (B.T.S.); (L.M.F.); (Y.R.)
| | - Lisa Marie Ferguson
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7602, South Africa; (B.T.S.); (L.M.F.); (Y.R.)
| | - Yashthi Ramsunder
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7602, South Africa; (B.T.S.); (L.M.F.); (Y.R.)
| | - Bashir M. Ayad
- Department of Physiology, Faculty of Medicine, Misurata University, Misratah P.O. Box 2478, Libya;
| | - Stefan S. Du Plessis
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates;
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7602, South Africa; (B.T.S.); (L.M.F.); (Y.R.)
| |
Collapse
|
9
|
Cai X, Ni H, Wang Q, Dai T, Wang L, Song C, Li Y, Li F, Meng T, Sheng H, Xiao L, Xu T, Yu X, Zeng Q, Guo P, Zhang X. Sperm quality decline associated with gaseous pollutant exposure: Evidence from a large cohort multicenter study. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132330. [PMID: 37611389 DOI: 10.1016/j.jhazmat.2023.132330] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Poor sperm quality is a prevalent cause of male infertility, and the association between gaseous ambient air pollutants exposure and semen quality remains unclear. OBJECTIVES To examine the relationship between gaseous air pollution exposure with semen quality in a large-scale and multi-center study. METHODS We analyzed 78,952 samples corresponding to 33,234 study subjects from 2014 to 2020. The high-resolution grid pollution dataset was used to estimate personal exposures to CO, SO2, NO2 and O3 across entire stage of semen formation and three crucial stages. The linear mixed models were performed to evaluate the relationships. RESULTS The results showed that sperm count was inversely related to SO2 exposure (-0.0070, -0.0128 to -0.0011). Decreased sperm concentration was associated with SO2 (-0.0083, -0.0142 to -0.0024), NO2 (-0.0162, -0.0320 to -0.0005) and O3 (-0.0306, -0.0480 to -0.0133) during 0-90 lag days, respectively. Additionally, we observed significant decline of PR and total motility with SO2 exposure. Similar trends were observed for SO2 and CO exposure during 3 key periods. CONCLUSIONS Our findings suggest that exposure to gaseous air pollutants may have negative impacts on sperm quality. These findings highlight the importance that critical periods of sperm development should be considered when implementing protective measures.
Collapse
Affiliation(s)
- Xiaoyan Cai
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Haobo Ni
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Qiling Wang
- National Health Commission Key Laboratory of Male Reproduction and Genetics, Guangzhou, China
| | - Tingting Dai
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Lingxi Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Chunying Song
- Human Sperm Bank, the Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Yushan Li
- Human Sperm Bank, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fuping Li
- Human Sperm Bank, the Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Tianqing Meng
- Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Human Sperm Bank, Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiqiang Sheng
- Human Sperm Bank, the Zhejiang Provincial Maternal and Child and Reproductive Health Care Center, Hangzhou, China
| | - Lina Xiao
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Ting Xu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Xiaolin Yu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Qinghui Zeng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Pi Guo
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China.
| | - Xinzong Zhang
- National Health Commission Key Laboratory of Male Reproduction and Genetics, Guangzhou, China; Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), China.
| |
Collapse
|
10
|
Xu Q, Guan Q, Lu Y, Xu J, Deng S, Dong C, Zhang X, Li W, Xia Y. Effect of short-term ambient air pollution exposure on early miscarriage and pregnancy hormones with critical window identification. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132328. [PMID: 37666168 DOI: 10.1016/j.jhazmat.2023.132328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Pregnancy hormones are particularly important in early miscarriage, and some evidence suggests that exposure to air pollution is associated with pregnancy hormones and miscarriage. However, the effects of air pollution on pregnancy hormone-mediated miscarriages have not yet been investigated. METHODS We collected air pollution exposure measurements and pregnancy hormone tests from the participants. Logistic regression models were used to investigate the association between air pollution and early miscarriages. A distributed lag nonlinear model (DLNM) was used to investigate non-linear and delayed associations and identify the crucial window. We performed mediation analysis to estimate the potential association that may exist between pregnancy hormone levels and early miscarriage. RESULTS Short-term exposure to CO and SO2 was associated with early miscarriage. Lag 22-28 days of exposure to both CO and SO2 and lag 15-21 days of exposure to CO were significantly positively associated with early miscarriage, with an obvious exposure dose response. Serum progesterone concentration explained 36.79 % of the association between lag 15-28 days of CO exposure and early miscarriage. CONCLUSION This study provides evidence for the association between short-term exposure to air pollution and early miscarriage, and provides clues for further exploration of biological mechanisms.
Collapse
Affiliation(s)
- Qing Xu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Quanquan Guan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yingying Lu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jie Xu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Siting Deng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chao Dong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaochen Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wen Li
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Yan K, Wang M, Cheng Y, Zou J, Zhang Y, Hu S, Chen Y, Lv Q, Ying S. An update on the association between ambient short-term air pollution exposure and daily outpatient visits for conjunctivitis: a time-series study in Hangzhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102790-102802. [PMID: 37672159 DOI: 10.1007/s11356-023-29647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Abstract
Air pollution is a major public health problem that can lead to conjunctivitis. This study aimed to explore the associations between air pollutants and outpatient visits for conjunctivitis in Hangzhou, China. This study collected data on 50,772 patients with conjunctivitis and the concentrations of six air pollutants from February 1, 2014, to August 31, 2018. A time series analysis using a generalized additive model (GAM) was conducted. We found that the risk of conjunctivitis was related to the air pollutants PM2.5, PM10, SO2, NO2, and O3, which had concentration hysteresis effects. The risk of conjunctivitis increased by 1.009 (95% confidence interval (CI): 1.003, 1.014), 1.011 (95% CI: 1.008, 1.015), 1.238 (95% CI: 1.186, 1.292), 1.028 (95% CI: 1.019, 1.038), and 1.013 (95% CI: 1.008, 1.017) for every 10 µg/m3 increase in PM2.5, PM10, SO2, NO2, and O3 concentrations, respectively. The lag effects of SO2 and NO2 were stronger than those of particulate matter. Females exposed to PM10, PM2.5, SO2, and O3 had a higher risk of conjunctivitis than males, while males exposed to NO2 had a nearly identical risk of conjunctivitis as females. People aged 19-59 were more likely to suffer from conjunctivitis. The risk of conjunctivitis caused by PM10, SO2, and O3 was highest in the transitional season, while the risk caused by NO2 was highest in the winter season. In conclusion, females and middle-aged adults were at higher risk of conjunctivitis. People were more susceptible to conjunctivitis during the transitional season. These findings highlight the importance of atmospheric pollution governance and reference for public health measures.
Collapse
Affiliation(s)
- Kaili Yan
- School of Public Health, Zhejiang Academy of Medical Sciences, Hangzhou Medical College, No.182, Tianmushan Road Zhejiang Province, Hangzhou, 310013, China
| | - Mingwei Wang
- Affiliated Hospital of Hangzhou Normal University, Zhejiang Province, Hangzhou, China
| | - Yongran Cheng
- School of Public Health, Zhejiang Academy of Medical Sciences, Hangzhou Medical College, No.182, Tianmushan Road Zhejiang Province, Hangzhou, 310013, China
| | - Jin Zou
- School of Public Health, Zhejiang Academy of Medical Sciences, Hangzhou Medical College, No.182, Tianmushan Road Zhejiang Province, Hangzhou, 310013, China
| | - Yu Zhang
- School of Public Health, Zhejiang Academy of Medical Sciences, Hangzhou Medical College, No.182, Tianmushan Road Zhejiang Province, Hangzhou, 310013, China
| | - Shuaiyue Hu
- School of Public Health, Zhejiang Academy of Medical Sciences, Hangzhou Medical College, No.182, Tianmushan Road Zhejiang Province, Hangzhou, 310013, China
| | - Yitong Chen
- Savaid Stomatology School, Hangzhou Medical College, Zhejiang Province, Hangzhou, China
| | - Qingqing Lv
- School of Public Health, Zhejiang Academy of Medical Sciences, Hangzhou Medical College, No.182, Tianmushan Road Zhejiang Province, Hangzhou, 310013, China
| | - Shibo Ying
- School of Public Health, Zhejiang Academy of Medical Sciences, Hangzhou Medical College, No.182, Tianmushan Road Zhejiang Province, Hangzhou, 310013, China.
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Zhejiang Province, Hangzhou, China.
| |
Collapse
|
12
|
Ye F, Du Y, Cao W, Jiang R, Qi Q, Sun H, Zhou J, Wang L. Higher serum AMH level is associated with better pregnancy outcomes of IVF/ICSI assisted pregnancy in infertile patients under 35 years old. Drug Discov Ther 2023; 17:299-303. [PMID: 37587050 DOI: 10.5582/ddt.2023.01044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
This study aimed to investigate the effect of anti-Mullerian hormone (AMH) on the pregnancy outcome of infertility assisted by IVF/Micro-Insemination/Embryo Transfer Infertility Assistance (IVF/ICSI-ET). A total of 324 patients under the age of 35 who received IVF/ICSI-ET assistance in our center were included in this analysis. AMH levels of these patients were measured by chemiluminescence method and divided into clinical pregnancy group (175 cases) and non-pregnancy group (149 cases) according to the final pregnancy outcome. The relationship between the two groups' pregnancy outcomes and AMH levels was analyzed. The above association was re-evaluated after excluding patients with polycystic ovary syndrome. There was no significant difference in age, body mass index (BMI), follicle-stimulating hormone (FSH), and 2 pronucleus (PN) between clinical and non-clinical pregnancy groups. Compared with the clinical pregnancy group, the level of AMH in the non-pregnancy group was significantly lower (p < 0.05). A higher AMH level was closely related to better IVF/ICSI-ET assisted pregnancy outcome in vitro. After excluding AMH abnormalities, the AMH level was still significantly associated with pregnancy outcomes of in vitro IVF/ICSI-ET-assisted pregnancy. Our results show a correlation between AMH level and pregnancy outcome of in vitro IVF/ICSI-ET assisted pregnancy. For women under age 35, lower AMH levels may be one of the predictors of adverse pregnancy outcomes. For patients with low AMH level, it is suggested to strengthen monitoring to ensure the safety and smoothness of the pregnancy process.
Collapse
Affiliation(s)
- Feijun Ye
- Reproductive Medicine Center, Zhoushan Maternal and Child Health Care Hospital, Zhoushan, Zhejiang, China
| | - Yan Du
- Clinical Research Unit, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Wenli Cao
- Reproductive Medicine Center, Zhoushan Maternal and Child Health Care Hospital, Zhoushan, Zhejiang, China
| | - Ruhe Jiang
- Clinical Research Unit, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Qing Qi
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Hongmei Sun
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|