1
|
Kong D, Liu J, Wang J, Chen Q, Liu Q, Sun F, Kong B. Effects of ultrasound-assisted immersion thawing in plasma-activated water on thawing rate, quality characteristics, lipid and protein oxidation of porcine longissimus dorsi. Food Chem 2024; 460:140424. [PMID: 39033636 DOI: 10.1016/j.foodchem.2024.140424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
This work investigated the effects of five thawing methods (air thawing (AT), water thawing (WT), plasma-activated water thawing (PT), ultrasound-assisted water thawing (UWT) and ultrasound-assisted plasma-activated water thawing (UPT)) on thawing rate, quality characteristics, lipid and protein oxidation of porcine longissimus dorsi using fresh sample as control. The thawing time of UPT samples was significantly reduced by 81.15% compared to AT treatment (P < 0.05). The thawing loss of UPT samples was 1.55% significantly lower than AT samples (4.51%) (P < 0.05). In addition, UPT samples had the least cooking loss and centrifugal loss. UPT treatment reduced the conversion of bound and immobilized water to free water and resulted in more uniform water distribution. UPT treatment significantly decreased the thiobarbituric acid reactive substances (TBARS) value and carbonyl content and increased the total sulfhydryl content of the samples (P < 0.05). In conclusion, UPT treatment increased the thawing rate and retarded the lipid and protein oxidation, resulting in better maintenance of quality characteristics of porcine longissimus dorsi than other thawing methods.
Collapse
Affiliation(s)
- Dewei Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaqi Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
2
|
Kong D, Liu J, Wang J, Chen Q, Liu Q, Sun F, Kong B. Ultrasound-assisted plasma-activated water thawing of porcine longissimus dorsi: Effects on physicochemical, thermal stability, rheological, and structural properties of myofibrillar protein. Food Chem 2024; 459:140430. [PMID: 39024870 DOI: 10.1016/j.foodchem.2024.140430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
This study evaluated the effects of five thawing methods (air thawing (AT), water thawing (WT), plasma-activated water thawing (PT), ultrasound-assisted water thawing (UWT) and ultrasound-assisted plasma-activated water thawing (UPT)) on the physicochemical, thermal stability, rheological, and structural properties of porcine longissimus dorsi myofibrillar protein (MP). UPT treatment significantly improved protein solubility (73.10%) and reduced protein turbidity (0.123) compared with AT, WT, and PT treatments (P < 0.05). UPT treatment reduced the MP particle size (635.50 nm) and zeta potential (-6.38 mV) compared with AT and WT treatments (P < 0.05), which was closer to that of the fresh sample. UPT treatment also maintained the MP surface hydrophobicity and thermal stability. UPT treatment improved the MP rheological properties of the sample. In addition, UPT treatment effectively protected the MP secondary and tertiary structures. In conclusion, UPT treatment better maintained the MP physicochemical, thermal stability, rheological, and structural properties of thawed porcine longissimus dorsi. Therefore, UPT treatment can be considered as an effective thawing method.
Collapse
Affiliation(s)
- Dewei Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaqi Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
3
|
Li P, Zhang H, Tian C, Zou H. Experimental Investigation of Bacterial Inactivation of Beef Using Indirect Cold Plasma in Cold Chain and at Room Temperature. Foods 2024; 13:2846. [PMID: 39272611 PMCID: PMC11395448 DOI: 10.3390/foods13172846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Pathogen contamination is a severe problem in maintaining food safety in the cold chain. Cold plasma (CP) is a novel non-thermal disinfection method that can be applied for the bacterial inactivation of food in appropriate contexts. Currently, research on CP used on food at cold chain temperatures is rare. This work investigated the bacterial inactivation effect of CP on beef at typical cold storage temperatures of 4 and -18 °C and room temperature (25 °C). The reactive species in CP were indirectly tested by evaluating O3, NO3- and NO2- in cold plasma-activated water (PAW), which indicated the highest concentrations of reactive species in CP at 25 °C and the lowest at -18 °C. The bactericidal efficacy of CP treatment against beef inoculated with Escherichia coli at -18 °C, 4 °C, and 25 °C was 30.5%, 60.1%, and 59.5%, respectively. The 4 °C environment was the most appropriate treatment for CP against beef, with the highest bactericidal efficacy and a minor influence on beef quality. The indirect CP treatment had no significant effect on the texture, color, pH, or cooking loss of beef at -18 °C. CP shows significant potential for the efficient decontamination of food at cold chain temperatures.
Collapse
Affiliation(s)
- Peiru Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Cryogenic Science and Technology, Beijing 100190, China
| | - Hainan Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Cryogenic Science and Technology, Beijing 100190, China
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Changqing Tian
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Cryogenic Science and Technology, Beijing 100190, China
| | - Huiming Zou
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Cryogenic Science and Technology, Beijing 100190, China
| |
Collapse
|
4
|
Du MR, Guo YY, Wei HZ, Zhu YP, Liu RR, Ma RN, Shi FK, Guo JS, Zhuang J. The effectiveness of gliding arc discharge plasma in sterilizing artificial seawater contaminated with Vibrio parahaemolyticus. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135015. [PMID: 38943886 DOI: 10.1016/j.jhazmat.2024.135015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
The rapid proliferation of the halophilic pathogen Vibrio parahaemolyticus poses a severe health hazard to halobios and significantly impedes intensive mariculture. This study aimed to evaluate the potential application of gliding arc discharge plasma (GADP) to control the infection of Vibrio parahaemolyticus in mariculture. This study investigated the inactivation ability of GADP against Vibrio parahaemolyticus in artificial seawater (ASW), changes in the water quality of GADP-treated ASW, and possible inactivation mechanisms of GADP against Vibrio parahaemolyticus in ASW. The results indicate that GADP effectively inactivated Vibrio parahaemolyticus in ASW. As the volume of ASW increased, the time required for GADP sterilization also increased. However, the complete sterilization of 5000 mL of ASW containing Vibrio parahaemolyticus of approximately 1.0 × 104 CFU/mL was achieved within 20 min. Water quality tests of the GADP-treated ASW demonstrated that there were no significant changes in salinity or temperature when Vibrio parahaemolyticus (1.0 ×104 CFU/mL) was completely inactivated. In contrast to the acidification observed in plasma-activated water (PAW) in most studies, the pH of ASW did not decrease after treatment with GADP. The H2O2 concentration in the GADP-treated ASW decreased after post-treatment. The NO2-concentration in the GADP-treated ASW remained unchanged after post-treatment. Further analysis revealed that GADP induced oxidative stress in Vibrio parahaemolyticus, which increased cell membrane permeability and intracellular ROS levels of Vibrio parahaemolyticus. This study provides a viable solution for infection with the halophilic pathogen Vibrio parahaemolyticus and demonstrates the potential of GADP in mariculture.
Collapse
Affiliation(s)
- Meng-Ru Du
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Sciences and Technology of China, Suzhou 215163, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Yu-Yi Guo
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Sciences and Technology of China, Suzhou 215163, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Han-Ze Wei
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Sciences and Technology of China, Suzhou 215163, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Yu-Pan Zhu
- Henan Key Laboratory of Ion-beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Rong-Rong Liu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Sciences and Technology of China, Suzhou 215163, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Ruo-Nan Ma
- Henan Key Laboratory of Ion-beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Fu-Kun Shi
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Sciences and Technology of China, Suzhou 215163, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| | - Jin-Song Guo
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Sciences and Technology of China, Suzhou 215163, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| | - Jie Zhuang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Sciences and Technology of China, Suzhou 215163, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| |
Collapse
|
5
|
Ma R, Fan Y, Yang X, Liu C, Wan J, Xu C, Wang R, Feng J, Jiao Z. Detoxification of DON-induced hepatotoxicity in mice by cold atmospheric plasma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116547. [PMID: 38843744 DOI: 10.1016/j.ecoenv.2024.116547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024]
Abstract
Deoxynivalenol (DON) is one of the most common mycotoxins distributed in food and feed, which causes severe liver injury in humans and animals. Cold atmospheric plasma (CAP) has received much attention in mycotoxin degradation due to the advantages of easy operation, high efficiency, and low temperature. So far, the majority of studies have focused on the degradation efficiency and mechanism of CAP on DON, while there is still little information available on the hepatotoxicity of DON after CAP treatment. Herein, this study aimed to investigate the effect of CAP on DON-induced hepatotoxicity both in vitro and in vivo and its underlying mechanisms. The results showed that 120-s CAP treatment achieved 97 % degradation of DON. The vitro hepatotoxicity of DON in L02 cells was significantly reduced with CAP treatment time. Meanwhile, CAP markedly alleviated DON-induced liver injury in mice including the balloon-like degeneration of liver tissues and elevation of AST and ALP level. The underlying mechanism for CAP detoxification of DON-induced hepatotoxicity was further elucidated. The results showed that DON caused severe oxidative stress in cells by suppressing the antioxidant signaling pathway of Nrf2/HO-1/NQO-1, consequently leading to mitochondrial dysfunction and cell apoptosis, accompanied by cellular senescence and inflammation. CAP blocked DON inhibition on the Nrf2/HO-1/NQO-1 signaling pathway through the efficient degradation of DON, accordingly alleviating the oxidative stress and liver injury induced by DON. Therefore, CAP is an effective method to eliminate DON hepatotoxicity, which can be applied in the detoxification of mycotoxin-contaminated food and feed to ensure human and animal health.
Collapse
Affiliation(s)
- Ruonan Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Yongqin Fan
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Xudong Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Chunli Liu
- Huadu District People's Hospital of Guangzhou, Guangzhou 510800, China
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Cui Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Ruixue Wang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junxia Feng
- Huadu District People's Hospital of Guangzhou, Guangzhou 510800, China.
| | - Zhen Jiao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Yao Q, Xu H, Zhuang J, Cui D, Ma R, Jiao Z. Inhibition of Fungal Growth and Aflatoxin B 1 Synthesis in Aspergillus flavus by Plasma-Activated Water. Foods 2023; 12:2490. [PMID: 37444228 DOI: 10.3390/foods12132490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The gaseous reactive oxygen/nitrogen species (RONS) generated by cold atmospheric plasma (CAP) can effectively inactivate Aspergillus flavus (A. flavus) and prolong the shelf-life of food. Plasma-activated water (PAW) is the extension of cold plasma sterilization technology. Without the limitation of a plasma device, PAW can be applied to more scenarios of food decontamination. However, the efficacy of PAW as a carrier of RONS for eradicating A. flavus or inhibiting its growth remains unclear. In this study, the immediate fungicidal effect and long-term inhibitory effect of PAW on A. flavus were investigated. The results demonstrated that 60-min instant-prepared PAW could achieve a 3.22 log reduction CFU/mL of A. flavus and the fungicidal efficacy of PAW gradually declined with the extension of storage time. Peroxynitrite (ONOO-/ONOOH) played a crucial role in this inactivation process, which could damage the cell wall and membrane structure, disrupt intracellular redox homeostasis, and impair mitochondrial function, ultimately leading to fungal inactivation. In addition to the fungicidal effect, PAW also exhibited fungistatic properties and inhibited the synthesis of aflatoxin B1 (AFB1) in A. flavus. By analyzing the cellular antioxidant capacity, energy metabolism, and key gene expression in the AFB1 synthesis pathway, it was discovered that PAW can significantly reduce ATP levels, while increasing SOD and CAT activity during 5-d cultivation. Meanwhile, PAW effectively suppressed the expression of genes related to AFB1 synthesis.
Collapse
Affiliation(s)
- Qihuan Yao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
- Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Hangbo Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
- Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Zhuang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Dongjie Cui
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Ruonan Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Zhen Jiao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
- Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Fukuda S, Sakurai Y, Izawa S. Detoxification of the post-harvest antifungal pesticide thiabendazole by cold atmospheric plasma. J Biosci Bioeng 2023:S1389-1723(23)00137-8. [PMID: 37296042 DOI: 10.1016/j.jbiosc.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Cold atmospheric plasma (CAP) irradiation has a sterilizing effect without thermal denaturation or the production of residual substances. Hence, it is considered to be a safe sterilization technology with minimal damage for fresh foods. In addition, its decomposition effect on chemical substances has also been confirmed, and the application of CAP in the food and agricultural domains is increasing. In this study, we examined the potential of CAP to detoxify pesticide residues. Post-harvest chemical treatments using pesticides, such as fungicides, are frequently employed in imported agricultural products and are often disapproved by consumers. Therefore, we assessed the detoxification of thiabendazole (TBZ), a widely used post-harvest pesticide, using low-cost air plasma irradiation. We found that CAP irradiation conditions that detoxified TBZ caused little damage to the edible parts of mandarin oranges. The results of the present study suggest that CAP irradiation is useful for detoxifying and degrading pesticide residues without damaging agricultural products and that CAP irradiation is an effective means of maintaining food safety.
Collapse
Affiliation(s)
- Shizu Fukuda
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki Hashiue-cho 1, Kyoto 606-8585, Japan
| | - Yasuhiro Sakurai
- National Institute of Technology, Akashi College, Nishioka Uozumi-cho, Akashi, Hyogo 674-8501, Japan
| | - Shingo Izawa
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki Hashiue-cho 1, Kyoto 606-8585, Japan.
| |
Collapse
|