1
|
Mao J, Li J, Li L, Zhao H. Characterization of road-deposited sediment wash-off and accurate splitting of initial runoff pollution in heterogeneous urban spaces. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123766. [PMID: 38492751 DOI: 10.1016/j.envpol.2024.123766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/06/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
Particulate materials arising from road-deposited sediments (RDS) are an essential target for the control and management of surface runoff pollution. However, the heterogeneity of urban spaces hinders the identification and quantification of particulate pollution, which is challenging when formulating precise control measures. To elucidate the factors that drive particulate pollution in heterogeneous urban spaces, the accumulation of RDS on dry days and the total suspended solids during six natural rainfall events were investigated across three urban-rural spatial units (central urban, central suburban, and remote suburban). The underlying surface type (asphalt or cement roads) and particle size composition jointly determined the spatial heterogeneity in the static accumulation and dynamic output loads of RDS during rainfall. These two factors explained 59.6% and 18.9% of the spatial heterogeneity, respectively, according to principal component analysis. A novel CPSI exponential wash-off equation that incorporates particle size composition and underlying surface type was applied. It precisely described the spatial heterogeneity of RDS wash-off loads, the estimated values exhibiting event mean concentration errors of 10.8-18.2%. When coupled with the M(V) curve, this CPSI exponential wash-off equation more precisely split the initial volume of runoff: a lower total volume (17.6-38.0%) was shown to carry a higher proportion of the load (70.0-93.7%) compared to the traditional coupled exponential wash-off equation (volume: 31.6-49.0%, load: 37-90%). This study provides a new approach to characterizing RDS wash-off processes and splitting initial runoff in heterogeneous spaces.
Collapse
Affiliation(s)
- Jintao Mao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650091, China
| | - Jiali Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650091, China
| | - Longbo Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hongtao Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Shi C, Feng X, Sun W, Qiu H, Liu G, Li S, Xie J, Wang P, Lin Y, Wei X, Xu T, Gao W. Pollutant removal in an experimental bioretention cell situated in a northern Chinese sponge city. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2164-2176. [PMID: 38678416 DOI: 10.2166/wst.2024.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/02/2024] [Indexed: 04/30/2024]
Abstract
To assess the viability and effectiveness of bioretention cell in enhancing rainwater resource utilization within sponge cities, this study employs field monitoring, laboratory testing, and statistical analysis to evaluate the water purification capabilities of bioretention cell. Findings indicate a marked purification impact on surface runoff, with removal efficiencies of 59.81% for suspended solids (SS), 39.01% for chemical oxygen demand (COD), 37.53% for ammonia nitrogen (NH3-N), and 30.49% for total phosphorus (TP). The treated water largely complies with rainwater reuse guidelines and tertiary sewage discharge standards. Notably, while previous research in China has emphasized water volume control in sponge city infrastructures, less attention has been given to the qualitative aspects and field-based evaluations. This research not only fills that gap but also offers valuable insights and practical implications for bioretention cell integration into sponge city development. Moreover, the methodology and outcomes of this study serve as a benchmark for future sponge city project assessments, offering guidance to relevant authorities.
Collapse
Affiliation(s)
- Chunyan Shi
- Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan; School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Xia Feng
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Weining Sun
- Environmental Building Branch, Changchun Municipal Engineering Design & Research Institute Co. Ltd, Changchun 130031, China
| | - Hong Qiu
- China Railway Eryuan Engineering Group Co., Ltd, Chengdu 610031, China
| | - Gen Liu
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Siwen Li
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Jing Xie
- Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan
| | - Pengxuan Wang
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Yingzi Lin
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Xindong Wei
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Tongyu Xu
- Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan E-mail:
| | - Weijun Gao
- Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan
| |
Collapse
|
3
|
Gao Z, Zhang Q, Wang Y, Jv X, Dzakpasu M, Wang XC. Evolution of water quality in rainwater harvesting systems during long-term storage in non-rainy seasons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168784. [PMID: 38000760 DOI: 10.1016/j.scitotenv.2023.168784] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
The development of rainwater utilization strategies has relied on rainwater harvesting (RWH) systems for centuries to alleviate the pressure on water resources. However, there are still significant knowledge gaps regarding the changes in water quality in RWH systems during long-term storage in non-rainy seasons. This study evaluated the water quality processes in RWH systems through static rainwater storage experiments for approximately 60 days. The results revealed that nutrients in rainwater accumulated in sediment during storage. Disturbance and redox conditions at the rainwater-sediment interface contribute to the release of sedimentary facies materials. The rainwater showed distinct DO stratification, with the biochemical reactions of sedimentary facies being the primary factor driving oxygen consumption. ORP and turbidity showed positive correlations with COD (r = 0.582; 0.572), TOC (r = 0.678; 0.681), TN (r = 0.452; 0.439), and NH4+-N (r = 0.502; 0.553) (P < 0.05). The regulation of water quality and extension of the usage cycle were identified as critical factors influenced by DO. In addition, bacteria share similar ecological niche preferences. These findings provide scientific evidence for the high-quality reuse of rainwater in decentralized RWH systems during long-term storage in non-rainy seasons.
Collapse
Affiliation(s)
- Zan Gao
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qionghua Zhang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China.
| | - Yufei Wang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xinyue Jv
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mawuli Dzakpasu
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China
| |
Collapse
|