1
|
Huang B, Li JM, Zang XM, Wang M, Pan W, Zhang KD, He H, Tan QG, Miao AJ. Cell-excreted proteins mediate the interactions of differently sized silica nanoparticles during cellular uptake. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133894. [PMID: 38452668 DOI: 10.1016/j.jhazmat.2024.133894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/09/2024]
Abstract
Exposure to different types of nanoparticles (NPs) results in their deposition in human bodies. While most studies have examined the cellular uptake of only one type of NP at a time, how the dynamics of NP uptake may change in the presence of other types of NPs remains unclear. We therefore investigated the interplay of two differently sized SiO2 NPs during their uptake by A549 human lung carcinoma cells. Both NPs contained a CdSeTe core, which was labeled with different Cd isotopes to differentiate between them. Our study showed that the uptake of one size of SiO2 NPs either increased or decreased with the concentration of the other size of SiO2 NPs. This variation in uptake was attributable to the concentration-dependent aggregation of SiO2 NPs, as determined by the amount of cell-excreted proteins adsorbed on the NP surface. Further, the effects of the protein corona on the attachment of SiO2 NPs to the cell surface and uptake competition between differently sized SiO2 NPs also played important roles. Cell-excreted proteins were then analyzed by proteomics. Overall, the complex interactions between coexisting NPs of different physicochemical properties and cell-excreted proteins should be considered during bio-applications and bio-safety evaluations of NPs.
Collapse
Affiliation(s)
- Bin Huang
- Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, School of Environment, Nanjing Normal University, Nanjing 210023, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, PR China
| | - Jia-Ming Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, PR China
| | - Xiao-Mei Zang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, PR China
| | - Mei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, PR China
| | - Wei Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, PR China
| | - Ke-Da Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, PR China
| | - Huan He
- Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Qiao-Guo Tan
- Key Laboratory of the Coastal and Wetland Ecosystems of Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, PR China.
| |
Collapse
|
2
|
Fernández-Trujillo S, Jiménez-Moreno M, Rodríguez-Fariñas N, Rodríguez Martín-Doimeadios RC. Critical evaluation of the potential of ICP-MS-based systems in toxicological studies of metallic nanoparticles. Anal Bioanal Chem 2024; 416:2657-2676. [PMID: 38329514 PMCID: PMC11009754 DOI: 10.1007/s00216-024-05181-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
The extensive application of metallic nanoparticles (NPs) in several fields has significantly impacted our daily lives. Nonetheless, uncertainties persist regarding the toxicity and potential risks associated with the vast number of NPs entering the environment and human bodies, so the performance of toxicological studies are highly demanded. While traditional assays focus primarily on the effects, the comprehension of the underlying processes requires innovative analytical approaches that can detect, characterize, and quantify NPs in complex biological matrices. Among the available alternatives to achieve this information, mass spectrometry, and more concretely, inductively coupled plasma mass spectrometry (ICP-MS), has emerged as an appealing option. This work critically reviews the valuable contribution of ICP-MS-based techniques to investigate NP toxicity and their transformations during in vitro and in vivo toxicological assays. Various ICP-MS modalities, such as total elemental analysis, single particle or single-cell modes, and coupling with separation techniques, as well as the potential of laser ablation as a spatially resolved sample introduction approach, are explored and discussed. Moreover, this review addresses limitations, novel trends, and perspectives in the field of nanotoxicology, particularly concerning NP internalization and pathways. These processes encompass cellular uptake and quantification, localization, translocation to other cell compartments, and biological transformations. By leveraging the capabilities of ICP-MS, researchers can gain deeper insights into the behaviour and effects of NPs, which can pave the way for safer and more responsible use of these materials.
Collapse
Affiliation(s)
- Sergio Fernández-Trujillo
- Department of Analytical Chemistry and Food Technology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III s/n, 45071, Toledo, Spain
| | - María Jiménez-Moreno
- Department of Analytical Chemistry and Food Technology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III s/n, 45071, Toledo, Spain
| | - Nuria Rodríguez-Fariñas
- Department of Analytical Chemistry and Food Technology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III s/n, 45071, Toledo, Spain
| | - Rosa Carmen Rodríguez Martín-Doimeadios
- Department of Analytical Chemistry and Food Technology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III s/n, 45071, Toledo, Spain.
| |
Collapse
|