1
|
Peng SY, Yang YD, Tian R, Lu N. Critical new insights into the interactions of hexafluoropropylene oxide-dimer acid (GenX or HFPO-DA) with albumin at molecular and cellular levels. J Environ Sci (China) 2025; 149:88-98. [PMID: 39181681 DOI: 10.1016/j.jes.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 08/27/2024]
Abstract
A key characteristic to be elucidated, to address the harmful health risks of environmental perfluorinated alkyl substances (PFAS), is their binding modes to serum albumin, the most abundant protein in blood. Hexafluoropropylene oxide-dimer acid (GenX or HFPO-DA) is a new industrial replacement for the widespread linear long-chain PFAS. However, the detailed interaction of new-generation short-chain PFAS with albumin is still lacking. Herein, the binding characteristics of bovine serum albumin (BSA) to GenX were explored at the molecular and cellular levels. It was found that this branched short-chain GenX could bind to BSA with affinity lower than that of legacy linear long-chain perfluorooctanoic acid (PFOA). Site marker competitive study and molecular docking simulation revealed that GenX interacted with subdomain IIIA to form BSA-GenX complex. Consistent with its weaker affinity to albumin protein, the cytotoxicity of branched short-chain GenX was less susceptible to BSA binding compared with that of the linear long-chain PFOA. In contrast to the significant effects of strong BSA-PFOA interaction, the weak affinity of BSA-GenX binding did not influence the structure of protein and the cytotoxicity of GenX. The detailed characterization and direct comparisons of serum albumin interaction with new generation short-chain GenX will provide a better understanding for the toxicological properties of this new alternative.
Collapse
Affiliation(s)
- Shi-Ya Peng
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Ya-Di Yang
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Rong Tian
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Naihao Lu
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
2
|
Tian R, Li JX, Lu N. Bisphenol S induced endothelial dysfunction via mitochondrial pathway in the vascular endothelial cells, and detoxification effect of albumin binding. Chem Biol Interact 2025; 407:111382. [PMID: 39793866 DOI: 10.1016/j.cbi.2025.111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/03/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
As a replacement of bisphenol A, bisphenol S (BPS) is commonly used in the wrappers and food containers of daily life. Epidemiological studies demonstrate a close link between BPS exposure and vascular diseases, where the biological activities of BPS remain scarcely known. Herein, the effects of BPS on endothelial function as well as the underlying mechanism were investigated in human umbilical vein endothelial cells (HUVECs) and mouse arteries. It was found that exposure of BPS dose-dependently induced endothelial dysfunction (i.e., decline of nitric oxide (NO) formation) in HUVECs, accompanied by the increase of reactive oxygen species (ROS) production and loss of mitochondria membrane potential. Mitochondria-specific antioxidant (Mito-Tempol) or superoxide scavenger (tiron) abolished the harmful effects of BPS, while superoxide dismutase (SOD)-specific siRNA exhibited negative influence, suggesting that mitochondrial ROS was responsible for BPS-induced endothelial dysfunction and SOD was a sensitive target of BPS. Consistently, plasma NO formation and endothelium-dependent vasodilation was significantly impaired in mice exposed to dietary BPS. In addition, the binding of bovine serum albumin (BSA, the most abundant protein in blood) to BPS considerably alleviated ROS formation and endothelial dysfunction in HUVECs. BPS primarily interacted with Sudlow site I of albumin to generate BSA-BPS complex through static mechanism, in which the hydrogen bonds and electrostatic forces played important roles. Altogether, dietary exposure to emerging BPS would disrupt vascular homeostasis via the induction of mitochondrial ROS formation and consequent endothelial dysfunction, highlighting the detoxification impact of albumin protein on the hazardous effects of environmental pollutants.
Collapse
Affiliation(s)
- Rong Tian
- College of Chemistry and Materials, Key Laboratory of Green Catalysis of Jiangxi Education Institutes, Jiangxi Normal University, Nanchang, 330022, China
| | - Jia-Xin Li
- College of Chemistry and Materials, Key Laboratory of Green Catalysis of Jiangxi Education Institutes, Jiangxi Normal University, Nanchang, 330022, China
| | - Naihao Lu
- College of Chemistry and Materials, Key Laboratory of Green Catalysis of Jiangxi Education Institutes, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
3
|
Xu L, Zhou XY, Ju WT, Ge YD, Xing MY, Wang X. Effect of the presence of berberine/curcumin on the binding of limonin to human serum albumin and antitumor activity in vitro. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124929. [PMID: 39116592 DOI: 10.1016/j.saa.2024.124929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
The competition among drugs for binding to plasma proteins is regarded as a pharmacokinetic drug interaction. Competition between antitumor agents and other drugs for plasma protein binding can alter the free concentration of the drug, potentially impacting its efficacy and increasing the risk of toxic side effects. Through a range of spectroscopic techniques, this study examined the interaction between limonin and human serum albumin (HSA) in the context of berberine (Ber) and curcumin (Cur) under physiological conditions to clarify the binding mechanisms of binary and ternary systems at the molecular level. As demonstrated by fluorescence quenching experiments, Static quenching was identified as the mechanism of interaction between HSA and limonin. The results of site competition experiments indicated that the binding site between limonin and HSA was site I, a result further supported by molecular docking simulations. Through the use of thermodynamic data calculations, it was determined that limonin forms a stable complex with HSA by establishing hydrogen bonds and van der Waals forces. Circular dichroism (CD) spectroscopy, three-dimensional (3D) fluorescence spectroscopy, and synchronous fluorescence spectroscopy (SFS) employed to validate the notion that limonin perturbed the microenvironment of amino acids and induced conformational changes in HSA. What's more, the presence of Ber or Cur was found to have further modified the alterations observed in the interaction between the original HSA-limonin binary system. In vitro cellular experiments showed that interaction with HSA reduced the antitumor activity of limonin. In contrast, adding Ber or Cur increased the inhibition rate of tumor cells. The coexistence of both Ber and Cur significantly diminished limonin's binding affinity to HSA. The current investigation enhances comprehension regarding the binding characteristics and interaction mechanisms involving limonin, Ber, Cur, and HSA. It explores the potential of HSA as a versatile drug carrier and furnishes theoretical underpinnings for co-administrative strategies.
Collapse
Affiliation(s)
- Liang Xu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China; Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Liaoning University, Shenyang 110036, China
| | - Xin-Yi Zhou
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Wan-Ting Ju
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Ying-Di Ge
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Mei-Yi Xing
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China; Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
4
|
Shi Q, Li Z, Zhao W, Hu X, Wang H, Wang J, Han M, Xu L, Sun H, Qin C, Ling W. Molecular mechanism of immunotoxicity: Binding interaction between perfluorinated compounds and human immunoglobulin G. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125032. [PMID: 39341409 DOI: 10.1016/j.envpol.2024.125032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Perfluorinated compounds (PFCs) can induce immunotoxicity effect via binding with proteins. Immunoglobulin G (IgG) is a common four chain monomer protein in serum, and plays an important role in long-term body fluid immunity. Whether PFCs can bind with IgG and further induce immunotoxicity is not clear. Herein, fluorescence quenching assay was used to verify the PFCs-IgG binding interactions. The occurrence of fluorescence quenching phenomenon suggested that PFCs could bind to IgG. Linear fitting curves demonstrated that the binding constants (KA) for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) were 2.51 × 106 L/mol and 1.58 × 105 L/mol, respectively. UV-vis spectral analysis results showed that the PFCs-IgG interactions mainly proceeded via the intercalation binding mode. Fourier transform infrared spectroscopy results revealed that PFCs preferentially bound to the C=O/N-H of IgG structure. Circular dichroism results revealed that PFCs-IgG binding induced the decrease of α-helix. Moreover, hydrogen bonds and van der Waals force dominated PFCs-IgG binding interactions. This binding process was a stable process, and its stability depended on the number of hydrogen bonds formation. This study reveals the mechanism of interaction between PFCs and IgG at the molecular level, providing a theoretical basis for the immunotoxic mechanism of PFCs.
Collapse
Affiliation(s)
- Qing Shi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zekai Li
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangzhiqian Zhao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hefei Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Miao Han
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin Xu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Sun
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
5
|
Zhou J, Li J, Ma L, Cheng C, Liu H, Wu L. Individual mono and co-interactions of butylated hydroxytoluene and its metabolite with pepsin: Multi-pronged research strategies. Int J Biol Macromol 2024; 280:135760. [PMID: 39299430 DOI: 10.1016/j.ijbiomac.2024.135760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/07/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
In this study, the interactions between butylated hydroxytoluene (BHT) and its metabolite 2,6-Di-tert-butyl-p-benzoquinone (BHT-Q) with pepsin (PEP) were explored using multispectral measurements and computer prediction techniques. UV-vis absorption spectra, fluorescence lifetime, and Stern-Volmer quenching analysis showed static fluorescence quenching of PEP by BHT/BHT-Q. Negative thermodynamic parameters indicated that the spontaneous formation of complexes was primarily driven by van der Waals (vdW) forces and hydrogen bonds (HB). Synchronous fluorescence and circular dichroism spectroscopy revealed conformational changes induced by BHT/BHT-Q on PEP. Furthermore, BHT and BHT-Q inhibited PEP's enzymatic activity, while PEP suppressed their antioxidant activity. Interestingly, BHT-Q weakened BHT's binding strength to PEP, affecting the enzyme inhibition rate. Computer predictions highlighted the integral role of hydrophobic interactions. Moreover, BHT and BHT-Q exhibited different effects on the stability and compactness of PEP, the residue environment of PEP became more flexible or rigid in the presence of BHT and BHT-Q. Changes in the hydrophobic solvent accessible surface area (SASA) elucidated that the microenvironment of hydrophobic residues of PEP was changed after binding with BHT and BHT-Q. Ultimately, BHT's stronger binding affinity to PEP than BHT-Q was attributed mainly to its larger negative surface area, facilitating interactions with more amino acid residues.
Collapse
Affiliation(s)
- Junqiao Zhou
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Jiayin Li
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Lan Ma
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Cong Cheng
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Hao Liu
- Information Centre of Liyuan Hospital Affiliated to Tongji Medical College Huazhong University of Science and Technology, Wuhan 430077, PR China
| | - Laiyan Wu
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China.
| |
Collapse
|
6
|
Xiao Q, Cao H, Tu X, Pan C, Fang Y, Huang S. Unraveling the impact of tungsten disulfide quantum dots on human serum albumin conformational dynamics and fibrillation pathways: An integrated multi-spectroscopic, biochemical, and molecular docking investigation. Int J Biol Macromol 2024; 282:136917. [PMID: 39490476 DOI: 10.1016/j.ijbiomac.2024.136917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Herein, the intricate molecular interplay between human serum albumin (HSA) and tungsten disulfide quantum dots (WS2 QDs) was probed using spectroscopic techniques and sophisticated molecular simulation methods. Fluorescence spectroscopy demonstrated that under physiological conditions, WS2 QDs forge a non-fluorescent ground-state complex with HSA, facilitated by hydrogen bonding and van der Waals forces, ultimately resulting in the static quenching of the protein's intrinsic fluorescence. Complementary site competition experiments and molecular docking simulations reinforced a precise 1: 1 binding stoichiometry, predominantly targeting HSA's Site I. Three-dimensional fluorescence spectroscopy revealed that WS2 QDs perturb the HSA polypeptide backbone, subtly modifying the microenvironment surrounding aromatic amino acid residues. This alteration was further corroborated by circular dichroism spectroscopy, marked by a decrease in helical content and a transition towards irregular peptide conformations. Thermal stability assays illuminated the reduced thermal resilience of the HSA - WS2 QD complex. Laser confocal microscopy coupled with thioflavin T staining yielded compelling evidence that WS2 QDs effectively inhibit amyloid fibril formation in both HSA and lysozyme, underscoring their potential as potent anti-amyloidogenic agents. This comprehensive study offers pivotal insights into multifaceted impact of WS2 QDs on protein structure and function, thereby expanding their horizon of potential applications within the burgeoning field of nanomedicine.
Collapse
Affiliation(s)
- Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Huishan Cao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Xincong Tu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Chunyan Pan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Yi Fang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|
7
|
Yadav A, Vuković L, Narayan M. An Atomic and Molecular Insight into How PFOA Reduces α-Helicity, Compromises Substrate Binding, and Creates Binding Pockets in a Model Globular Protein. J Am Chem Soc 2024; 146:12766-12777. [PMID: 38656109 PMCID: PMC11728912 DOI: 10.1021/jacs.4c02934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) pose significant health risks due to their widespread presence in various environmental and biological matrices. However, the molecular-level mechanisms underlying the interactions between PFAS and biological constituents, including proteins, carbohydrates, lipids, and DNA, remain poorly understood. Here, we investigate the interactions between a legacy PFAS, viz. perfluorooctanoic acid (PFOA), and the milk protein β-lactoglobulin (BLG) obtained using a combination of experimental and computational techniques. Circular dichroism studies reveal that PFOA perturbs the secondary structure of BLG, by driving a dose-dependent loss of α-helicity and alterations in its β-sheet content. Furthermore, exposure of the protein to PFOA attenuates the on-rate constant for the binding of the hydrophobic probe 8-anilino-1-naphthalene sulfonic acid (ANS), suggesting potential functional impairment of BLG by PFOA. Steered molecular dynamics and umbrella sampling calculations reveal that PFOA binding leads to the formation of an energetically favorable novel binding pocket within the protein, when residues 129-142 are steered to unfold from their initial α-helical structure, wherein a host of intermolecular interactions between PFOA and BLG's residues serve to insert the PFOA into the region between the unfolded helix and beta-sheets. Together, the data provide a novel understanding of the atomic and molecular mechanism(s) by which PFAS modulates structure and function in a globular protein, leading to a beginning of our understanding of altered biological outcomes.
Collapse
Affiliation(s)
- Anju Yadav
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Lela Vuković
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
- Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79968, United States
- Bioinformatics Program, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
8
|
Lamichhane HB, Arrigan DWM. Modulating the ion-transfer electrochemistry of perfluorooctanoate with serum albumin and β-cyclodextrin. Analyst 2024; 149:2647-2654. [PMID: 38546701 DOI: 10.1039/d3an02164e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are durable synthetic pollutants that persist in the environment and resist biodegradation. Ion-transfer electrochemistry at aqueous-organic interfaces is a simple strategy for the detection of ionised PFAS. Herein, we investigate the modulation of the ion transfer voltammetry of perfluorooctanoate (PFOA) at liquid-liquid micro-interface arrays by aqueous phase bovine serum albumin (BSA) or β-cyclodextrin (β-CD) and examine the determination of association constants for these binding interactions. By tracking the ion transfer current due to ionised, uncomplexed PFOA as a function of BSA or β-CD concentration, titration curves are produced. Fitting of a binding isotherm to these data provides the association constants. The association constant of PFOA with the BSA determined in this way was ca. 105 M-1 assuming a 1 : 1 binding. Likewise, the association constant for PFOA with β-CD was ca. 104 M-1 for a 1 : 1 β-CD-PFOA complex. Finally, the simultaneous effect of both BSA and β-CD on the ion transfer voltammetry of PFOA was studied, showing clearly that PFOA bound to BSA is released (de-complexed) upon addition of β-CD. The results presented here show ion transfer voltammetry as a simple strategy for the study of molecular and biomolecular binding of ionised PFAS and is potentially useful in understanding the affinity of different PFAS with aqueous phase binding agents such as proteins and carbohydrates.
Collapse
Affiliation(s)
- Hum Bahadur Lamichhane
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia.
| | - Damien W M Arrigan
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia.
| |
Collapse
|
9
|
Alesio J, Bothun GD. Differential scanning fluorimetry to assess PFAS binding to bovine serum albumin protein. Sci Rep 2024; 14:6501. [PMID: 38499613 PMCID: PMC10948889 DOI: 10.1038/s41598-024-57140-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024] Open
Abstract
The rapid screening of protein binding affinity for poly- and perfluoroalkyl substances (PFAS) benefits risk assessment and fate and transport modelling. PFAS are known to bioaccumulate in livestock through contaminated food and water. One excretion pathway is through milk, which may be facilitated by binding to milk proteins such as bovine serum albumin (BSA). We report a label-free differential scanning fluorimetry approach to determine PFAS-BSA binding over a broad temperature range. This method utilizes the tryptophan residue within the protein binding pocket as an intrinsic fluorophore, eliminating the need for fluorophore labels that may influence binding. BSA association constants were determined by (a) an equilibrium-based model at the melting temperature of BSA and (b) the Hill adsorption model to account for temperature dependent binding and binding cooperativity. Differences in binding between PFAS and fatty acid analogs revealed that a combination of size and hydrophobicity drives PFAS binding.
Collapse
Affiliation(s)
- Jessica Alesio
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, 02881, USA
| | - Geoffrey D Bothun
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, 02881, USA.
| |
Collapse
|
10
|
Yang YD, Lu N, Tian R. The interaction of perfluorooctane sulfonate with hemoproteins and its relevance to molecular toxicology. Int J Biol Macromol 2024; 254:128069. [PMID: 37967600 DOI: 10.1016/j.ijbiomac.2023.128069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Perfluorooctane sulfonate (PFOS), a representative of perfluorinated compounds in industrial and commercial products, has posed a great threat to animals and humans via environmental exposure and dietary consumption. Herein, we investigated the effects of PFOS binding on the redox state and stability of two hemoproteins (hemoglobin (Hb) and myoglobin (Mb)). Fluorescence spectroscopy, circular dichroism and UV-vis absorption spectroscopy demonstrated that PFOS could induce the conformational changes of proteins along with the exposure of heme cavity and generation of hemichrome, which resulted in the increased release of free hemin. After that, free hemin liberated from hemoproteins led to reactive oxygen species formation, lipid peroxidation, cell membrane damage and loss of cell viability in vascular endothelial cells, while neither Hb nor Mb did show cytotoxicity. Chemical inhibitors of ferroptosis effectively mitigated hemin-caused toxicity, identifying the hemin-dependent ferroptotic cell death mechanisms. These data demonstrated that PFOS posed a potential threat of toxicity through a mechanism which involved its binding to hemoproteins, decreased oxygen transporting capacity, and increased hemin release. Altogether, our findings elucidate the binding mechanisms of PFOS with two hemoproteins, as well as possible risks on vascular endothelial cells, which would have important implications for the human and environmental toxicity of PFOS.
Collapse
Affiliation(s)
- Ya-Di Yang
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Naihao Lu
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Rong Tian
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China.
| |
Collapse
|
11
|
Solan ME, Schackmuth B, Bruce ED, Pradhan S, Sayes CM, Lavado R. Effects of short-chain per- and polyfluoroalkyl substances (PFAS) on toxicologically relevant gene expression profiles in a liver-on-a-chip model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122610. [PMID: 37742859 DOI: 10.1016/j.envpol.2023.122610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/23/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Short-chain per- and polyfluoroalkyl substances (PFAS) are highly stable and widely used environmental contaminants that pose potential health risks to humans. Aggregating reliable mechanistic information for safety assessments necessitates physiologically relevant high-throughput screening approaches. Here, we demonstrated the utility of a liver-on-a-chip model to investigate the effects of five short-chain PFAS at low (1 nM) and high (1 μM) concentrations on toxicologically-relevant gene expression profiles using the QuantiGene® Plex Assay. We found that the short-chain PFAS tested in this study modulated the expression of ABCG2, a gene encoding for the breast cancer resistance protein (BCRP), with marked and significant upregulation (up to 4-fold) observed for all but one of the short-chain PFAS tested. PFBS and HFPO-DA repressed SLCO1B3 expression, a gene that encodes for an essential liver-specific organic anion transporter. High concentrations of PFBS, PFHxA, and PFHxS upregulated the expression of genes encCYP1A1,CYP2B6 and CYP2C19 with the same treatments resulting in the repression of the expression of the gene encoding CYP1A2. This dysregulation could have consequences for the clearance of endogenous compounds and xenobiotics. However, we acknowledge that increased expression of genes encoding for transporters and biotransformation enzymes may or may not indicate changes to their protein expression or activity. Overall, our study provides important insights into the effects of short-chain PFAS on liver function and their potential implications for human health. The use of the liver-on-a-chip model in combination with the QuantiGene® Plex Assay may be a valuable tool for future high-throughput screening and gene expression profiling in toxicology studies.
Collapse
Affiliation(s)
- Megan E Solan
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Bennett Schackmuth
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Erica D Bruce
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Sahar Pradhan
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
12
|
Yang YD, Li JX, Lu N, Tian R. Serum albumin mitigated perfluorooctane sulfonate-induced cytotoxicity by affecting the cellular responses. Biophys Chem 2023; 302:107110. [PMID: 37741269 DOI: 10.1016/j.bpc.2023.107110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
During the wide applications of perfluorinated materials such as perfluorooctane sulfonate (PFOS) in commercial and industrial products, the potential toxicity of these engineered compounds has attracted more and more attention. As a typical environmental pollutant, PFOS could preferentially bind to albumin protein in vivo. However, the role of protein-PFOS interactions in the cytotoxicity of PFOS was not stressed enough. Herein, we investigated the interactions of PFOS with human serum albumin (HSA, the most abundant protein in human plasma) using both experimental and theoretical approaches. It was demonstrated that PFOS could mainly bind to the Sudlow site I of HSA to generate HSA-PFOS complex through hydrogen bonds and van der Waals forces. Toxicity assays with endothelial cells illustrated that the binding of HSA could significantly attenuate the intracellular uptake and subcellular distribution of PFOS, thereby inhibiting the formation of reactive oxygen species and toxicity for those HSA-bound PFOS. Similarly, the presence of fetal bovine serum in the cell culture media greatly reduced PFOS-caused cytotoxicity. Conclusively, our study reveals that the binding of albumin protein to PFOS could mitigate its toxicity by the modulation of cellular responses. The formation of protein-complexed contaminants would significantly reduce the bioavailability of these chemicals and subsequently mitigate their environmental toxicology to the human health.
Collapse
Affiliation(s)
- Ya-Di Yang
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jia-Xin Li
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Naihao Lu
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Rong Tian
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
13
|
Solan ME, Lavado R. Effects of short-chain per- and polyfluoroalkyl substances (PFAS) on human cytochrome P450 (CYP450) enzymes and human hepatocytes: An in vitro study. Curr Res Toxicol 2023; 5:100116. [PMID: 37575337 PMCID: PMC10412865 DOI: 10.1016/j.crtox.2023.100116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Short-chain per- and polyfluoroalkyl substances (PFAS) have been developed as alternatives to legacy long-chain PFAS, but they may still pose risks due to their potential to interact with biomolecules. Cytochrome P450 (CYP450) enzymes are essential for xenobiotic metabolism, and disruptions of these enzymes by PFAS can have significant human health implications. The inhibitory potential of two legacy long-chain (PFOA and PFOS) and five short-chain alternative PFAS (PFBS, PFHxA, HFPO-DA, PFHxS, and 6:2 FTOH) were assessed in recombinant CYP1A2, - 2B6, -2C19, -2E1, and -3A4 enzymes. Most of the short-chain PFAS, except for PFHxS, tested did not result in significant inhibition up to 100 μM. PFOS inhibited recombinant CYP1A2, -2B6, -2C19, and -3A4 enzymes. However, concentrations where inhibition occurred, were all higher than the averages reported in population biomonitoring studies, with IC50 values higher than 10 µM. We also evaluated the activities of CYP1A2 and CYP3A4 in HepaRG monolayers following 48 h exposures of the short-chain PFAS at two concentrations (1 nM or 1 µM) and with or without an inducer (benzo[a]pyrene, BaP, for CYP1A2 and rifampicin for CYP3A4). Our findings suggest that both 1 nM and 1 µM exposures to short-chain PFAS can modulate the CYP1A2 activity induced by BaP. Except for PFHxS, the short-chain PFAS appear to have little effect on CYP3A4 activity. Understanding the effects of PFAS exposure on biotransformation can shed light on the mechanisms of PFAS toxicity and aid in developing effective strategies for managing chemical risks, enabling regulators to make more informed decisions.
Collapse
Affiliation(s)
- Megan E. Solan
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States
| |
Collapse
|