1
|
Cheng H, Zheng X, Zhu Y, Wang P, Zhu J, Wei J, Liu Z, Huang C. Stabilization of sulfidated nano zerovalent iron with biochar: Enhanced transport and application for hexavalent chromium removal from water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123045. [PMID: 39481156 DOI: 10.1016/j.jenvman.2024.123045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/06/2024] [Accepted: 10/20/2024] [Indexed: 11/02/2024]
Abstract
Nano zerovalent iron (nZVI) has been broadly used in the treatment of chromium (Cr) pollution. However, conventional nZVI particles are prone to surface oxidation and particle agglomeration, limiting their effectiveness in contaminant removal. To address these issues, sulfidated nZVI (S-nZVI) was synthesized on the corn stover biochar (BC) surface for rapid removal of Cr(VI) from water. Sedimentation and column transport experiments demonstrated that S-nZVI@BC exhibits excellent dispersion and transport properties, efficiently removing Cr(VI) in the pH range of 2.5-5.0 and showing minimal impact from dissolved oxygen. The Fe0, Fe(Ⅱ), and S2- components of the material, along with the leached Fe2+ ions, contributed to the Cr(VI) removal. A portion of the removed Cr(VI) was reduced to Cr(III) in solution, while another portion was adsorbed on the material's surface through precipitation, with 42.0% of Cr being adsorbed within 30 min. Cycling and water matrix interference experiments further demonstrated the material's excellent reusability and resistance to interference. Notably, the continuous Cr(VI) removal capability in column experiments and the reactivation potential of S-nZVI@BC highlight its promise for practical applications. Future studies are suggested to explore the ecotoxicological effects of the S-nZVI@BC and its capacity for the simultaneous removal of multiple contaminants.
Collapse
Affiliation(s)
- Hao Cheng
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiaoyu Zheng
- Hunan Changsha Ecological Environment Monitoring Center, Changsha, 410001, China
| | - Yi Zhu
- Hunan Changsha Ecological Environment Monitoring Center, Changsha, 410001, China
| | - Ping Wang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jian Zhu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jie Wei
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zili Liu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chao Huang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
2
|
Yu K, Tu Y, Wan M, Guo Y, Liu S, Li H, Fan Y, Zhao G, Zhong S, Liu C, Luo X. Integrated influence of sulfide modification on the reactivity of nanoscale zero-valent iron towards decabromodiphenyl ether under an electromagnetic field. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134428. [PMID: 38691928 DOI: 10.1016/j.jhazmat.2024.134428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/28/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Individual application of sulfide modification and electromagnetic field (EMF) can enhance the reactivity of nanoscale zero-valent iron (nZVI), yet the potential of both in combination is not clear. This work found that the reactivity of nZVI towards decabromodiphenyl ether was significantly enhanced by the combined effect of sulfidation and EMF. The specific reaction rate constant of nZVI increased by 7 to 10 times. A series of characterization results revealed that the sulfidation level not only affects the inherent reactivity but also the magnetic-induced heating (MIH) and corrosion (MIC) of nZVI. These collectively influence the degradation efficiency of nZVI under EMF. Sulfidation generally diminished the MIH effect. The low degree of sulfidation (S/Fe = 0.1) slightly reduced the MIC effect by 21.4%. However, the high degree of sulfidation (S/Fe = 0.4) led to significantly enhanced MIC effect by 107.1%. For S/Fe = 0.1 and 0.4, the overall enhancement in the reactivity resulting from EMF was alternately dominated by the contributions of MIH and MIC. This work provides valuable insights into the MIH and MIC effects about the sulfidation level of nZVI, which is needed for further exploration and optimization of this combined technology.
Collapse
Affiliation(s)
- Kai Yu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Yuxuan Tu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Mao Wan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Yongliang Guo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Shiqi Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Huimin Li
- Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang 330006, PR China
| | - Yanchun Fan
- Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang 330006, PR China
| | - Gang Zhao
- Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang 330006, PR China
| | - Songxiong Zhong
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
| |
Collapse
|
3
|
Yang Z, Li Y, Zhang G. Degradation of microplastic in water by advanced oxidation processes. CHEMOSPHERE 2024; 357:141939. [PMID: 38621489 DOI: 10.1016/j.chemosphere.2024.141939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/19/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
Plastic products have gained global popularity due to their lightweight, excellent ductility, high durability, and portability. However, out of the 8.3 billion tons of plastic waste generated by human activities, 80% of plastic waste is discarded due to improper disposal, and then transformed into microplastic pollution under the combined influence of environmental factors and microorganisms. In this comprehensive study, we present a thorough review of recent advancements in research on the source, distribution, and effect of microplastics. More importantly, we conducted deep research on the catalytic degradation technologies of microplastics in water, including advanced oxidation and photocatalytic technologies, and elaborated on the mechanisms of microplastics degradation in water. Besides, various strategies for mitigating microplastic pollution in aquatic ecosystems are discussed, ranging from policy interventions, the initiative for plastic recycling, the development of efficient catalytic materials, and the integration of multiple technological approaches. This review serves as a valuable resource for addressing the challenge of removing microplastic contaminants from water bodies, offering insights into effective and sustainable solutions.
Collapse
Affiliation(s)
- Zhixiong Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Yuan Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Gaoke Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.
| |
Collapse
|
4
|
Xu Y, Liu H, Wen S, Guo J, Shi X, He Q, Lin W, Gao Y, Wang R, Xue W. High performance self-assembled sulfidized nanoscale zero-valent iron for the immobilization of cadmium in contaminated sediments: Optimization, microbial response, and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134022. [PMID: 38484662 DOI: 10.1016/j.jhazmat.2024.134022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Sulfidized nanoscale zero-valent iron (S-nZVI) showed excellent removal capacity for cadmium (Cd) in aqueous phase. However, the remediation effects of S-nZVI on Cd-contaminated sediment and its interactions with microorganisms in relation to Cd fate remain unclear. The complexity of the external environment posed a challenge for Cd remediation. This study synthesized S-nZVI with different S and Fe precursors to investigate the effect of precursors and applied the optimal material to immobilize Cd in sediments. Characterization analysis revealed that the precursor affected the morphology, Fe0 crystallinity, and the degree of oxidation of the material. Incubation experiments demonstrated that the immobilization efficiency of Cd using S-nZVIFe3++S2- (S/Fe = 0.14) reached the peak value of 99.54%. 1% and 5% dosages of S-nZVI significantly reduced Cd concentration in the overlying water, DTPA-extractable Cd content, and exchangeable (EX) Cd speciation (P < 0.05). Cd leaching in sediment and total iron in the overlying water remained at low levels during 90 d of incubation. Notably, each treatment maintained a high Cd immobilization efficiency under different pH, water/sediment ratio, organic acid, and coexisting ion conditions. Sediment physicochemical properties, functional bacteria, and a range of adsorption, complexation and precipitation of CdS effects dominated Cd immobilization.
Collapse
Affiliation(s)
- Yiqun Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Hongdou Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Siqi Wen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Jiaming Guo
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaoyu Shi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Qi He
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Weilong Lin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Rongzhong Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
5
|
Yuan Y, Wei X, Zhu M, Cai Y, Wang Y, Dang Z, Yin H. Unravelling the removal mechanisms of trivalent arsenic by sulfidated nanoscale zero-valent iron: The crucial role of reactive oxygen species and the multiple effects of citric acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170275. [PMID: 38262532 DOI: 10.1016/j.scitotenv.2024.170275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
The remediation of arsenic-contaminated groundwater by sulfidated nanoscale zero-valent iron (S-nZVI) has raised considerable attention. However, the role of trivalent arsenic (As(III)) oxidation by S-nZVI in oxic conditions (S-nZVI/O2) remains controversial, and the comprehensive effect of citric acid (CA) prevalent in groundwater on As(III) removal by S-nZVI remains unclear. Herein, the mechanisms of reactive oxygen species (ROS) generation and multiple effects of CA on As(III) removal by S-nZVI/O2 were systematically explored. Results indicated that the removal efficiency of As(III) by S-nZVI/O2 (97.81 %) was prominently higher than that by S-nZVI (66.71 %), resulting from the significant production of ROS (mainly H2O2 and OH) under oxic conditions, which played a crucial role in promoting the As(III) oxidation. Additionally, CA had multiple effects on As(III) removal by S-nZVI/O2 system: (i) CA impeded the diffusion of As(III) towards S-nZVI and increased the secondary risk of immobilized As(III) re-releasing into the environment due to the Fe dissolution from S-nZVI; (ii) CA could significantly enhance the yields of OH from 25.29 to 133.00 μM via accelerating the redox cycle of Fe(II)/Fe(III) and increasing the oriented conversion rate of H2O2 to OH; (iii) CA could also enrich the types of ROS (such as O2- and 1O2) in favor of further As(III) oxidation. This study contributed novel findings regarding the control of As(III) contaminated groundwater using S-nZVI technologies.
Collapse
Affiliation(s)
- Yibo Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Xipeng Wei
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Minghan Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Yuhao Cai
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Yuanzheng Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China.
| |
Collapse
|