1
|
Waegenaar F, García-Timermans C, Van Landuyt J, De Gusseme B, Boon N. Impact of operational conditions on drinking water biofilm dynamics and coliform invasion potential. Appl Environ Microbiol 2024; 90:e0004224. [PMID: 38647288 PMCID: PMC11107155 DOI: 10.1128/aem.00042-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Biofilms within drinking water distribution systems serve as a habitat for drinking water microorganisms. However, biofilms can negatively impact drinking water quality by causing water discoloration and deterioration and can be a reservoir for unwanted microorganisms. In this study, we investigated whether indicator organisms for drinking water quality, such as coliforms, can settle in mature drinking water biofilms. Therefore, a biofilm monitor consisting of glass rings was used to grow and sample drinking water biofilms. Two mature drinking water biofilms were characterized by flow cytometry, ATP measurements, confocal laser scanning microscopy, and 16S rRNA sequencing. Biofilms developed under treated chlorinated surface water supply exhibited lower cell densities in comparison with biofilms resulting from treated groundwater. Overall, the phenotypic as well as the genotypic characteristics were significantly different between both biofilms. In addition, the response of the biofilm microbiome and possible biofilm detachment after minor water quality changes were investigated. Limited changes in pH and free chlorine addition, to simulate operational changes that are relevant for practice, were evaluated. It was shown that both biofilms remained resilient. Finally, mature biofilms were prone to invasion of the coliform, Serratia fonticola. After spiking low concentrations (i.e., ±100 cells/100 mL) of the coliform to the corresponding bulk water samples, the coliforms were able to attach and get established within the mature biofilms. These outcomes emphasize the need for continued research on biofilm detachment and its implications for water contamination in distribution networks. IMPORTANCE The revelation that even low concentrations of coliforms can infiltrate into mature drinking water biofilms highlights a potential public health concern. Nowadays, the measurement of coliform bacteria is used as an indicator for fecal contamination and to control the effectiveness of disinfection processes and the cleanliness and integrity of distribution systems. In Flanders (Belgium), 533 out of 18,840 measurements exceeded the established norm for the coliform indicator parameter in 2021; however, the source of microbial contamination is mostly unknown. Here, we showed that mature biofilms, are susceptible to invasion of Serratia fonticola. These findings emphasize the importance of understanding and managing biofilms in drinking water distribution systems, not only for their potential to influence water quality, but also for their role in harboring and potentially disseminating pathogens. Further research into biofilm detachment, long-term responses to operational changes, and pathogen persistence within biofilms is crucial to inform strategies for safeguarding drinking water quality.
Collapse
Affiliation(s)
- Fien Waegenaar
- Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, Belgium
| | - Cristina García-Timermans
- Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, Belgium
| | - Josefien Van Landuyt
- Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, Belgium
| | - Bart De Gusseme
- Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, Belgium
- Farys, Department R&D – Innovation Water, Ghent, Belgium
| | - Nico Boon
- Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, Belgium
| |
Collapse
|
2
|
Liu J, Li DW, He X, Liu R, Cheng H, Su C, Chen M, Wang Y, Zhao Z, Xu H, Cheng Z, Wang Z, Pedentchouk N, Lea-Smith DJ, Todd JD, Liu X, Zhao M, Zhang XH. A unique subseafloor microbiosphere in the Mariana Trench driven by episodic sedimentation. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:168-181. [PMID: 38433963 PMCID: PMC10902237 DOI: 10.1007/s42995-023-00212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/23/2023] [Indexed: 03/05/2024]
Abstract
Hadal trenches are characterized by enhanced and infrequent high-rate episodic sedimentation events that likely introduce not only labile organic carbon and key nutrients but also new microbes that significantly alter the subseafloor microbiosphere. Currently, the role of high-rate episodic sedimentation in controlling the composition of the hadal subseafloor microbiosphere is unknown. Here, analyses of carbon isotope composition in a ~ 750 cm long sediment core from the Challenger Deep revealed noncontinuous deposition, with anomalous 14C ages likely caused by seismically driven mass transport and the funneling effect of trench geomorphology. Microbial community composition and diverse enzyme activities in the upper ~ 27 cm differed from those at lower depths, probably due to sudden sediment deposition and differences in redox condition and organic matter availability. At lower depths, microbial population numbers, and composition remained relatively constant, except at some discrete depths with altered enzyme activity and microbial phyla abundance, possibly due to additional sudden sedimentation events of different magnitude. Evidence is provided of a unique role for high-rate episodic sedimentation events in controlling the subsurface microbiosphere in Earth's deepest ocean floor and highlight the need to perform thorough analysis over a large depth range to characterize hadal benthic populations. Such depositional processes are likely crucial in shaping deep-water geochemical environments and thereby the deep subseafloor biosphere. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00212-y.
Collapse
Affiliation(s)
- Jiwen Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Da-Wei Li
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237 China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
| | - Xinxin He
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Ronghua Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Haojin Cheng
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Chenglong Su
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
| | - Mengna Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
| | - Yonghong Wang
- Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education/College of Marine Geosciences, Ocean University of China, Qingdao, 266100 China
| | - Zhongsheng Zhao
- Key Laboratory of Physical Oceanography, Ministry of Education/Research Vessel Centre, Ocean University of China, Qingdao, 266100 China
| | - Hanyue Xu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
| | - Zhangyu Cheng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
| | - Zicheng Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
| | - Nikolai Pedentchouk
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ UK
| | - David J. Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ UK
| | - Jonathan D. Todd
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ UK
| | - Xiaoshou Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Meixun Zhao
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237 China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100 China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
3
|
Sun C, Zhang S, Yang J, Zhou H, Cheng H, Chen Z, Yu L, Wang Y, Chen X. Discrepant assembly processes of prokaryotic communities between the abyssal and hadal sediments in Yap Trench. ENVIRONMENTAL RESEARCH 2024; 241:117602. [PMID: 37951379 DOI: 10.1016/j.envres.2023.117602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/17/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
Abyssal and hadal sediments represent two of the most type ecosystems on Earth and have the potential interactions with geochemistry. However, little is known about the prokaryotic community assembly and the response of prokaryotic communities to metal(loid)s in trench sediments due to the lack of adequate and appropriate samples. In this study, a systematic investigation combined the assembly mechanisms and co-occurrence patterns of prokaryotic communities between the hadal and abyssal sediments across the Yap Trench. The results revealed that the hadal prokaryotes had less species diversity, but more abundant function than the abyssal prokaryotes. The prokaryotic communities in the abyssal sediments had more core taxa than the hadal sediments. Twenty-one biomarkers mostly affiliated with Nitrosopumilaceae were detected using Random-Forests machine learning algorithm. Furthermore, stochasticity was dominant in the prokaryotic community assembly processes of the Yap Trench sediments. Meanwhile, homogeneous selection (32.6%-52.9%) belonging to deterministic processes governed the prokaryotic community assembly in hadal sediments with increasing of sediment depth. In addition to total nitrogen and total organic carbon, more metal(loid)s were significantly correlated with the prokaryotic community in the hadal sediments than that in the abyssal sediments. The hadal prokaryotic communities was most positively related to bismuth (r = 0.31, p < 0.01), followed by calcium, chromium, cerium, potassium, plumbum, scandium, titanium, and vanadium. Finally, co-occurrence networks revealed two potential dominant prokaryotic modules in Yap Trench sediments covaried across oceanographic zonation. By contrast, the hadal network had relatively more complexity, more bacterial taxa, and more associations among prokaryotic taxa, relative to the abyssal network. This study reveals potentially metal variables and community assembly mechanisms of the prokaryotic community in abyssal and hadal sediments and provides a better understanding on the prokaryotic diversity and ecology in trench sediment ecosystems.
Collapse
Affiliation(s)
- Chongran Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Shuangfei Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Jichao Yang
- College of Marine Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, Hunan, China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, Hunan, China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, Hunan, China
| | - Libo Yu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian, China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, Hunan, China.
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|