1
|
Fang Y, Wang F, Fang H, Lei Z, Song W, Fu C, Du X, Wang Z, Zhao Z. Synergistically enhanced heterogeneous activation of dissolved oxygen for aqueous carbamazepine degradation over S(III) coupled with siderite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125048. [PMID: 39357556 DOI: 10.1016/j.envpol.2024.125048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/17/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
The wide occurrence of emerging contaminants (ECs) was drawing more attention due to the potential hazard and threat on human and environment. Carbamazepine (CBZ) is a widely prescribed medication that has garnered considerable research interest with the exposures exceeding the environmental carrying capacity. We have established the innovative heterogeneous advanced oxidation process (AOPs) based on the activated dissolved oxygen (DO) coupled with S(III) and natural iron ore (siderite). In S(III)/O2/siderite system, we investigated the degradation efficiency, reactive species generation mechanism, and degradation pathway of CBZ. CBZ degradation and mineralization rate were 90% above and ∼15% with the reaction time of 40 min. The degradation of CBZ conformed to a pseudo-first-order kinetic model, with an activation energy determination of 76.36 kJ/mol. The optimal initial solution pH was the weak acid condition (pH = 4-6) for CBZ degradation. Moreover, the inhibition effects of coexisting substance including Cl-, HCO3-, and natural organic matter (NOM) on CBZ removal were observed, while the coexisted SO42- exhibited no significant influence. In addition, the reactive species generated in S(III)/O2/siderite system were predominantly identified as sulfate radical (SO4∙-) and hydroxyl radical (∙OH). The crucial intermediate complexes, Fe(III)S(IV)O3(+) and Fe(II)HS(IV)O3(+), was proposed to form in the initial stages of the reaction, which upon decomposition, yielded SO4∙- along with other reactive species. The degradation pathway of CBZ primarily involved deamination, oxidative ring-opening, hydroxylation, decarboxylation, and ketone degradation processes. This work provides the effective approach for the CBZ degradation with the mild reaction conditions and the sustainable technology for ECs treatment and control.
Collapse
Affiliation(s)
- Yuning Fang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fei Wang
- Shandong Marine Resource and Environment Research Institute/Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai, 264006, China
| | - Hongze Fang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhaosheng Lei
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wei Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Caixia Fu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 51060, China.
| | - Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhiwei Zhao
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Cross Research Institute of Ocean Engineering Safety and Sustainable Development, Guangzhou, 510000, China
| |
Collapse
|
2
|
Pei C, Li B, Li X, Wang J, Zhang H, Chen X, She J. Preparation and optimization of sulfur ferrous inorganic carbon composite filler for autotrophic denitrification nitrogen and phosphorus removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123181. [PMID: 39500162 DOI: 10.1016/j.jenvman.2024.123181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024]
Abstract
Sulfur autotrophic denitrification (SAD) occurs without organic carbon sources, offering advantages in removing nitrogen pollutants from water with low carbon to nitrogen ratio. However, ensuring nitrate-reducing sulfide-oxidizing bacteria ability to access the necessary sulfur and inorganic carbon sources is a challenge. Therefore, this study investigated the feasibility of utilizing a SAD composite filler to mitigate nitrogen and phosphorus pollutants concentrations in secondary effluent of wastewater treatment plants (WWTPs) and reduce eutrophication risk in the receiving water. The use of paraffin optimized composite filler with a satisfying 3.70 % break rate and wear rate without dramatically deteriorating contaminant removal performance. The process achieved 94.26 % total nitrogen (TN) and 90.91 % PO43--P removal rates in treating synthetic wastewater; and 2.72 ± 1.92 mg/L and 0.29 ± 0.06 mg/L of TN and PO43--P discharge in treating WWTPs secondary effluent, respectively. The results indicated that denitrification performance of the filler was primarily influenced by variations in NH4+-N resulting from SAD and dissimilatory nitrate reduction to ammonia caused by differences in filler composition and preparation factors. Based on the performance difference in SAD, Fex + leached by H+ in the filler changed, affecting phosphorus removal performance. The change in mechanical properties of the filler was primarily dependent on the surface characteristics of the filler and the content/type of the binder. This study demonstrates the feasibility of using SAD for advanced nitrogen and phosphorus removal from wastewater and applying sulfur/siderite integrated composite filler as a pilot, thereby offering insights for the preparation of SAD fillers.
Collapse
Affiliation(s)
- Changying Pei
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Bolin Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China.
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jing Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Han Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiaoguo Chen
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jian She
- Central-Southern Safety & Environment Technology Institute Co., Ltd, China.
| |
Collapse
|
3
|
Zuo Q, Yang Y, Xie X, Yang L, Zhang Q, He X. Grinding siderite with ferric sulfate to generate an active ferrous source for Cr(VI) reduction. CHEMOSPHERE 2024; 361:142516. [PMID: 38850691 DOI: 10.1016/j.chemosphere.2024.142516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/12/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Activated siderite, endowed with excellent properties, was simply prepared by co-grinding with Fe sulfate to enhance its high reducing ability for Cr(VI). Batch experiments were conducted to investigate the main affecting parameters, such as material ratio, pH, temperature, etc. The removal of Cr(VI) by activated siderite was completed within 4 h of the reaction. The activated siderite maintained a high removal effect of Cr(VI) within a wide pH range (3-9). Various analytical methods, including XRD, SEM/EDS, XPS, etc., were employed to characterize the samples and discover variations before and after the reaction. The Fe (Ⅱ) in activated siderite becomes highly active, and it can even be released from the solid phase in the mildly acidic liquid phase to efficiently reduce Cr(VI) and mitigate its toxicity. These findings introduce an innovative approach for activating various minerals widely distributed in nature to promote the recovery of the ecological system.
Collapse
Affiliation(s)
- Qiang Zuo
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yi Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Xin Xie
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Qiwu Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaoman He
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
4
|
Sun H, Yao J, Ma B, Knudsen TS, Yuan C. Siderite's green revolution: From tailings to an eco-friendly material for the green economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169922. [PMID: 38199373 DOI: 10.1016/j.scitotenv.2024.169922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Siderite, extensively mined as a natural iron mineral, is often discarded as tailings due to the low grade of the ore and due to the high cost of current sorting technologies. Yet, this mineral has demonstrated significant potential in several pivotal areas of the environmental remediation. Siderite not only possesses exceptional adsorption, catalytic, and microbial carrier capabilities but also offers an eco-friendly and cost-effective solution for the environmental pollution management. This article consolidates research advancements and achievements over the past few decades concerning siderite's role in pollution control, delving deeply into its various remediation pathways. Initially, the paper contrasts the performance differences between natural and synthetic siderite, followed by a comprehensive overview of siderite's adsorption mechanisms for various inorganic pollutants. Furthermore, this paper analyzes the unique physicochemical attributes of siderite as both, a reductant and the catalyst, with a special emphasis on its use in the preparation of SCR catalysts and in the catalytic advanced oxidation processes for organic pollutants' degradation. This paper also enumerates and discusses the myriad advantages of siderite as a microbial carrier, thereby enhancing our understanding of biogeochemical cycles and pollutant transformations. In essence, this review systematically elucidates the mechanisms and intrinsic physicochemical properties of siderite in pollution control, paving the way for novel strategies to augment siderite's environmental remediation performance.
Collapse
Affiliation(s)
- Haoxiang Sun
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Jun Yao
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China.
| | - Bo Ma
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Tatjana Solevic Knudsen
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11 000, Belgrade, Serbia
| | - Chenyi Yuan
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| |
Collapse
|