1
|
Liu S, Huang J, He W, Shi L, Zhang W, Li E, Hu J, Zhang C, Pang H. Effects of microplastics on microbial community structure and wheatgrass traits in Pb-contaminated riparian sediments under flood-drainage-planting conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134283. [PMID: 38613956 DOI: 10.1016/j.jhazmat.2024.134283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
The coexistence of microplastics (MPs) and heavy metals in sediments has caused a potential threat to sediment biota. However, differences in the effects of MPs and heavy metals on microbes and plants in sediments under different sediment conditions remain unclear. Hence, we investigated the influence of polyethylene (PE) and polylactic acid (PLA) MPs on microbial community structure, Pb bioavailability, and wheatgrass traits under sequential incubation of sediments (i.e., flood, drainage, and planting stages). Results showed that the sediment enzyme activities presented a dose-dependent effect of MPs. Besides, 10 % PLA MPs significantly increased the F1 fractions in three stages by 11.13 %, 30.10 %, and 17.26 %, respectively, thus resulting in higher Pb mobility and biotoxicity. MPs altered sediment bacterial composition and structures, and bacterial community differences were evident in different incubation stages. Moreover, the co-exposure of PLA MPs and Pb significantly decreased the shoot length and total biomass of wheatgrass and correspondingly activated the antioxidant enzyme activity. Further correlation analysis demonstrated that community structure induced by MPs was mainly driven by sediment enzyme activity. This study contributes to elucidating the combined effects of MPs and heavy metals on sediment ecosystems under different sediment conditions.
Collapse
Affiliation(s)
- Si Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Wenjuan He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lixiu Shi
- College of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Enjie Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jinying Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chenyu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Haoliang Pang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
2
|
Li Y, Xu G, Yu Y. Freeze-thaw aged polyethylene and polypropylene microplastics alter enzyme activity and microbial community composition in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134249. [PMID: 38603909 DOI: 10.1016/j.jhazmat.2024.134249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
In cold regions, microplastics (MPs) in the soil undergo freeze-thaw (FT) aging process. Little is known about how FT aged MPs influence soil physico-chemical properties and microbial communities. Here, two environmentally relevant concentrations (50 and 500 mg/kg) of 50 and 500 µm polyethylene (PE) and polypropylene (PP) MPs treated soils were subjected to 45-day FT cycles (FTCs). Results showed that MPs experienced surface morphology, hydrophobicity and crystallinity alterations after FTCs. After 45-day FTCs, the soil urease (SUE) activity in control (MPs-free group that underwent FTCs) was 33.49 U/g. SUE activity in 50 µm PE group was reduced by 19.66 %, while increased by 21.16 % and 37.73 % in 500 µm PE and PP groups compared to control. The highest Shannon index was found in 50 µm PP-MPs group at 50 mg/kg, 2.26 % higher than control (7.09). Compared to control (average weighted degree=8.024), all aged MPs increased the complexity of network (0.19-1.43 %). Bacterial biomarkers of aged PP-MPs were associated with pollutant degradation. Aged PP-MPs affected genetic information, cellular processes, and disrupted the biosynthesis of metabolites. This study provides new insights into the potential hazards of MPs after FTCs on soil ecosystem in cold regions.
Collapse
Affiliation(s)
- Yanjun Li
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
3
|
Zhang L, Bai J, Zhai Y, Zhang K, Wang Y, Tang R, Xiao R, Jorquera MA. Pollution levels and potential ecological risks of trace elements in relation to bacterial community in surface water of shallow lakes in northern China before and after ecological water replenishment. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 262:104318. [PMID: 38354450 DOI: 10.1016/j.jconhyd.2024.104318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Ecological water replenishment is a crucial and effective measure to improve the water quality and ecological function of lakes. However, the effects of ecological water replenishment on the pollution characteristics and ecological risks of trace elements and bacterial communities in lake surface water are still kept unclear. We investigated the pollution levels and potential ecological risks for trace elements, as well as variation of the bacterial community in surface water in the BYD lake before and after ecological water replenishment. Our results revealed that higher levels and pollution indexes (Igeo) of trace metals (e.g., As, Cd, Co, Cu and Ni; p < 0.05) after ecological water replenishment were observed than before ecological water replenishment and their total potential ecological risk (∑RI) were increased. In contrast, the network complexity of these trace elements, including nodes, edges, average diameter, modularity, clustering coefficient and average pathlength showed a decrease after ecological water replenishment than before. The diversity (community richness, community diversity and phylogenetic diversity decreased) and community structure of the bacterial community in the surface water (p < 0.05) were greatly changed after ecological water replenishment than before, with the increase in heavy metal-resistant phylum (e.g., Acidobacteriota). Moreover, the concentration of trace elements and ∑RI were significantly correlated with the alpha diversity of bacterial community, as well as dissolved organic carbon (DOC) and ORP, after ecological water replenishment. The findings indicate that it is very necessary to continuously monitor trace metal pollution levels and heavy metal-resistant phylum and identify their potential pollution sources for water environment control and lake ecosystem health.
Collapse
Affiliation(s)
- Ling Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China; School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China
| | - Junhong Bai
- School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Yujia Zhai
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Kegang Zhang
- Department of Environmental Engineering and Science, North China Electric Power University, Baoding, China
| | - Yaqi Wang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ruoxuan Tang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Rong Xiao
- College of Environment & Safety Engineering, FuZhou University, Fuzhou, China
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
4
|
Xiao Y, Guo W, Qi X, Hashem MS, Wang D, Sun C. Differences in Cadmium Uptake and Accumulation in Seedlings of Wheat Varieties with Low- and High-Grain Cadmium Accumulation under Different Drought Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3499. [PMID: 37836239 PMCID: PMC10574867 DOI: 10.3390/plants12193499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Cadmium (Cd) and drought, as abiotic stresses, have long been significant challenges for crop growth and agricultural production. However, there have been relatively few studies conducted on the effects of drought stress on Cd uptake, especially regarding the differences in Cd uptake characterization in varieties with varying Cd accumulation under different drought stress. To investigate the effects of drought conditions on Cd uptake by wheat in different genotypes under specific background levels of Cd pollution, we validated the differences in root absorption characteristics of low- (YM) and high-grain Cd accumulating wheat genotypes (XM) using non-invasive micro-test technology, and we conducted a hydroponic experiment on the Cd addition and different drought levels in a climate-controlled chamber. The biomass, root morphology, Cd uptake, and accumulation were determined under Cd (100 µmol L-1) and different drought levels of 0% (0 MPa), 5% (-0.100 Mpa), 10% (-0.200 Mpa), and 15% (-0.388 Mpa) simulated by polyethylene glycol (PEG-6000). We found that the simultaneous exposure to Cd and drought had a suppressive effect on the total root lengths, root surface areas, and root volumes of XM and YM, albeit with distinct patterns of variation. As the concentration of PEG-6000 increased, the Cd concentrations and the amount of Cd accumulated in the roots and shoots of XM and YM decreased. Specifically, the Cd concentration in the roots exhibited a reduction ranging from 12.51% to 66.90%, while the Cd concentration in the shoots experienced an even greater decrease of 50.46% to 80.57%. The PEG-6000 concentration was significantly negatively correlated (p < 0.001) with Cd concentration of roots and shoots and Cd accumulation in roots, shoots, and the whole plants and significantly negatively correlated (p < 0.05) with the total length, surface area, and volume of roots. This study confirms that drought stress (5% PEG-6000) can decrease the uptake and accumulation of Cd in wheat seedlings without significant inhibition of biomass, and the change of root morphology (root length) and the decrease of Cd concentration in roots may be the main direct pathways for achieving these effects under drought stress. This research provides a new perspective and idea for water management in Cd-contaminated farmland.
Collapse
Affiliation(s)
- Yatao Xiao
- Institute of Farmland Irrigation of CAAS/Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453003, China;
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; (D.W.)
| | - Wei Guo
- Institute of Farmland Irrigation of CAAS/Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453003, China;
| | - Xuebin Qi
- Institute of Farmland Irrigation of CAAS/Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453003, China;
| | - Mahmoud S. Hashem
- Agricultural Research Center, Agricultural Engineering Research Institute (AEnRI), Giza 256, Egypt
| | - Dezhe Wang
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; (D.W.)
| | - Chaoxiang Sun
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; (D.W.)
| |
Collapse
|
5
|
Chen S, Xu J, Peng L, Cheng Z, Kuang X, Li D, Peng C, Song H. Cadmium accumulation in rice grains is mitigated by duckweed-like hydrophyte through adsorption and increased ammonia nitrogen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 890:164510. [PMID: 37257595 DOI: 10.1016/j.scitotenv.2023.164510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Although increasing attention has been paid to agronomic measures for reducing the heavy metal load in rice grain, the effects of duckweed-paddy co-cropping technology on the accumulation of cadmium (Cd) in rice grains remain unclear. To investigate its specific effects on Cd accumulation in paddy fields, three types of duckweed-like hydrophyte (DH), Azolla imbricata, Spirodela polyrrhiza, and Lemna minor were chosen for study. Their use resulted in a reduction of Cd content in rice grains from 0.40 mg/kg to <0.20 mg/kg, with A. imbricata yielding the best results (0.15 mg/kg). The three types of DH reduced the available Cd content in the soil by 10 % to 35 % after the paddy tillering stage. The reduction of available Cd content was attributed to the absorption, high pH, and increase of relative abundance of special bacteria of immobilizing Cd. In addition, DH could regulate soil nitrogen leading to ammonium nitrogen increased from 75 mg/kg to 100 mg/kg, while nitrate nitrogen decreased from 0.55 to 0.1-0.3 mg/kg. The increase of ammonium nitrogen content might induce the low Cd transfer ability in rice plant and then low Cd content in rice grain. This study demonstrated that DH has a good effect on the reduction of the Cd concentration in rice grains. Consequently, duckweed-paddy co-cropping technology offers a potential solution to heavy metal pollution and agricultural non-point source pollution, as it not only reduces Cd levels in rice plants, but also fixes nitrogen, reducing the need for nitrogen application.
Collapse
Affiliation(s)
- Shaoning Chen
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, PR China
| | - Junhui Xu
- Agriculture and Rural Bureau of Heshan District, Yiyang City, Hunan Province Yiyang 413002, PR China
| | - Liang Peng
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, PR China.
| | - Ziyi Cheng
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, PR China
| | - Xiaolin Kuang
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, PR China
| | - Dan Li
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, PR China
| | - Cheng Peng
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, PR China
| | - Huijuan Song
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, PR China
| |
Collapse
|