1
|
Zhou Y, Cao D, Zhang R, Si P, Zhang H, Wang X, Su N, Liu Z, Lu C. Construction of floating photothermal-assisted S-scheme heterojunction with enhanced photocatalytic degradation of tetracycline: Insights into mechanisms, degradation pathways and toxicity assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122586. [PMID: 39299127 DOI: 10.1016/j.jenvman.2024.122586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Inspired by ecological floating beds to treat water pollution through photosynthesis, we employed a combination of calcination and hydrothermal methods to construct a photothermal-assisted photocatalysis system based on a floating monolithic porous mesh of g-C3N4 (MPMCN) loaded with the excellent photothermal material Bi2MoO6 (BMO), forming a BMO/MPMCN S-scheme heterojunction. This approach improved the utilization efficiency of solar light by BMO/MPMCN, minimized heat loss, and enhanced the overall temperature of the material during the reaction process, thereby accelerating interfacial electron transfer. The unique floating structure confers a larger specific surface area to BMO/MPMCN, providing more reaction sites for TC pollutants and efficiently removing TC contamination from water. BMO/MPMCN degradated 99.3% of TC after 90 min of photothermal reaction, and exhibited good recyclability and reusability. Structural and performance characterizations of the material were carried out using techniques such as XRD, TEM, electrochemical testing, and ESR. Furthermore, the corresponding band structure and S-scheme electron transfer mechanism of the BMO/MPMCN heterojunction were deduced through the combination of in-situ XPS and UPS. The possible degradation pathways of TC and the ecological toxicity changes of intermediate products were analyzed. Finally, a mechanistic model for the photothermal-assisted photocatalytic degradation of TC in water by the BMO/MPMCN S-scheme heterojunction was established, providing a novel approach for the practical application of photocatalysis technology.
Collapse
Affiliation(s)
- Yahong Zhou
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Geo University, Shijiazhuang, 050031, PR China
| | - Delu Cao
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Geo University, Shijiazhuang, 050031, PR China
| | - Rongyu Zhang
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Geo University, Shijiazhuang, 050031, PR China
| | - Pengfei Si
- Shijiazhuang Botanical Garden, Shijiazhuang, 050011, PR China
| | - Hefan Zhang
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Geo University, Shijiazhuang, 050031, PR China
| | - Xueying Wang
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Geo University, Shijiazhuang, 050031, PR China
| | - Ni Su
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Geo University, Shijiazhuang, 050031, PR China
| | - Zhuo Liu
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Geo University, Shijiazhuang, 050031, PR China
| | - Changyu Lu
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Geo University, Shijiazhuang, 050031, PR China.
| |
Collapse
|
2
|
Zhang T, Huang X, Qiao J, Liu Y, Zhang J, Wang Y. Recent developments in synthesis of attapulgite composite materials for refractory organic wastewater treatment: a review. RSC Adv 2024; 14:16300-16317. [PMID: 38769962 PMCID: PMC11103670 DOI: 10.1039/d4ra02014f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
Attapulgite clay, due to its unique crystalline hydrated magnesium-aluminium silicate composition and layer-chain structure, possesses exceptional adsorption and catalytic properties, which enable it or its composites to be utilized as adsorbents and catalysts for wastewater treatment. But the drawbacks of attapulgite are also very obvious, such as relatively low specific surface area (compared to traditional adsorbents such as activated carbon and activated alumina), easy aggregation, and difficulty in dispersion. In order to fully utilize and improve the performance of attapulgite, researchers have conducted extensive research on its modification, but few specialized works have comprehensively evaluated the synthesis, applications and challenges for attapulgite-based composite materials in refractory organic wastewater treatments. This paper provides a comprehensive review of controllable preparation strategies, characterization methods and mechanisms of attapulgite-based composite materials, as well as the research progress of these materials in refractory organic wastewater treatment. Based on this review, constructive recommendations, such as deep mechanism analysis from molecular level multi-functional attapulgite-based material developments, and using biodegradable materials in attapulgite-based composites, were proposed.
Collapse
Affiliation(s)
- Ting Zhang
- School of Petrochemical Engineering, Lanzhou University of Technology Lanzhou P. R. China
| | - Xiaoyi Huang
- School of Petrochemical Engineering, Lanzhou University of Technology Lanzhou P. R. China
| | - Jiaojiao Qiao
- School of Petrochemical Engineering, Lanzhou University of Technology Lanzhou P. R. China
| | - Yang Liu
- School of Petrochemical Engineering, Lanzhou University of Technology Lanzhou P. R. China
| | - Jingjing Zhang
- School of Petrochemical Engineering, Lanzhou University of Technology Lanzhou P. R. China
| | - Yi Wang
- School of Petrochemical Engineering, Lanzhou University of Technology Lanzhou P. R. China
| |
Collapse
|
3
|
Khan SA, Jain M, Pant KK, Ziora ZM, Blaskovich MAT. Photocatalytic degradation of parabens: A comprehensive meta-analysis investigating the environmental remediation potential of emerging pollutant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171020. [PMID: 38369133 DOI: 10.1016/j.scitotenv.2024.171020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
The increasing prevalence of paraben compounds in the environment has given rise to concerns regarding their detrimental impacts on both ecosystems and human health. Over the past few decades, photocatalytic reactions have drawn significant attention as a method to accelerate the otherwise slow degradation of these pollutants. The current study aims to evaluate the current efficacy of the photocatalytic method for degrading parabens in aqueous solutions. An extensive literature review and bibliometric analysis were conducted to identify key research trends and influential areas in the field of photocatalytic paraben degradation. Studies were screened based on the predetermined inclusion and exclusion criteria, which led to 13 studies that were identified as being appropriate for the meta-analysis using the random effects model. Furthermore, experimental parameters such as pH, paraben initial concentration, catalyst dosage, light intensity, and contact time have been reported to have key impacts on the performance of the photocatalytic degradation process. A comprehensive quantitative assessment of these parameters was carried out in this work. Overall, photocatalytic techniques could eliminate parabens with an average degradation efficiency of >80 %. The findings of the Egger's test and the Begg's test were statistically not significant suggesting potential publication bias was not observed. This review provides a holistic understanding of the photocatalytic degradation of parabens and is anticipated to encourage more widespread adoption of photocatalytic procedures as a suitable method for the elimination of parabens from aqueous solutions, opening new avenues for future research in this direction.
Collapse
Affiliation(s)
- Sadaf Aiman Khan
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Marut Jain
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kamal Kishore Pant
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India.
| | - Zyta Maria Ziora
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mark A T Blaskovich
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
4
|
Shakoor M, Shakoor MB, Jilani A, Ahmed T, Rizwan M, Dustgeer MR, Iqbal J, Zahid M, Yong JWH. Enhancing the Photocatalytic Degradation of Methylene Blue with Graphene Oxide-Encapsulated g-C 3N 4/ZnO Ternary Composites. ACS OMEGA 2024; 9:16187-16195. [PMID: 38617626 PMCID: PMC11007858 DOI: 10.1021/acsomega.3c10172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/16/2024]
Abstract
Methylene blue (MB) is a toxic contaminant present in wastewater. Here, we prepared various composites of graphene oxide (GO) with graphitic carbon nitride (g-C3N4) and zinc oxide (ZnO) for the degradation of MB. In comparison to ZnO (22.9%) and g-C3N4/ZnO (76.0%), the ternary composites of GO/g-C3N4/ZnO showed 90% photocatalytic degradation of MB under a light source after 60 min. The experimental setup and parameters were varied to examine the process and effectiveness of MB degradation. Based on the results of the experiments, a proposed photocatalytic degradation process that explains the roles of GO, ZnO, and g-C3N4 in improving the photocatalytic efficacy of newly prepared GO/g-C3N4/ZnO was explored. Notably, the g-C3N4/ZnO nanocomposite's surface was uniformly covered with ZnO nanorods. The images of the samples clearly demonstrated the porous nature of GO/g-C3N4/ZnO photocatalysts, and even after being mixed with GO, the g-C3N4/ZnO composite retained the layered structure of the original material. The catalyst's porous structure plausibly enhanced the degradation of the contaminants. The high-clarity production of g-C3N4 and the effectiveness of the synthesis protocol were later validated by the absence of any trace contamination in the energy-dispersive X-ray spectroscopy (EDS) results. The composition of the ZnO elements and their spectra were revealed by the EDS results of the prepared ZnO nanorods, g-C3N4/ZnO, and GO/g-C3N4/ZnO. The outcomes indicated that the nanocomposites were highly uncontaminated and contained all necessary elements to facilitate the transformative process. The results of this experiment could be applied at a large scale, thus proving the effectiveness of photocatalysts for the removal of dyes.
Collapse
Affiliation(s)
- Muhammad
Hassan Shakoor
- Department
of Chemistry, Riphah International University, Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Muhammad Bilal Shakoor
- College
of Earth & Environmental Sciences, University
of the Punjab, Lahore 54590, Pakistan
| | - Asim Jilani
- Center
of Nanotechnology, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Toheed Ahmed
- Department
of Chemistry, Riphah International University, Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Muhammad Rizwan
- Department
of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Mohsin Raza Dustgeer
- Department
of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Javed Iqbal
- Center
of Nanotechnology, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Muhammad Zahid
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Jean Wan Hong Yong
- Department
of Biosystems and Technology, Swedish University
of Agricultural Sciences, 23456 Alnarp, Sweden
| |
Collapse
|
5
|
Wen J, Du X, Hua F, Gu Y, Li M, Tang T. PVP Passivated δ-CsPbI 3: Vacancy Induced Visible-Light Absorption and Efficient Photocatalysis. Molecules 2024; 29:1670. [PMID: 38611948 PMCID: PMC11013652 DOI: 10.3390/molecules29071670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
The aqueous instability of halide perovskite seriously hinders its direct application in water as a potential photocatalyst. Here, we prepared a new type of polyvinylpyrrolidone (PVP) passivated δ-CsPbI3 (δ-CsPbI3@PVP) microcrystal by a facile method. This material can be uniformly dispersed in water and stably maintain its crystal structure for a long time, breaking through the bottleneck of halide perovskite photocatalysis in water. Under visible light, δ-CsPbI3@PVP can almost completely photodegrade organic dyes (including Rhodamine B, methylene blue, and crystal violet) in only 20 min. The efficient photocatalytic activity is attributed to the enhanced visible light absorption arising from PbI2 defects in δ-CsPbI3@PVP and the intrinsic low photoluminescence quantum yield of δ-CsPbI3, which induces efficient light absorption and photocatalytic activity. We highlight δ-CsPbI3@PVP as an effective aqueous photocatalyst, and this study provides new insights into how to exploit the potential of halide perovskite in photocatalytic applications.
Collapse
Affiliation(s)
- Jianfeng Wen
- College of Physics and Electronic Information Engineering, Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China; (J.W.); (X.D.); (F.H.); (Y.G.); (M.L.)
| | - Xin Du
- College of Physics and Electronic Information Engineering, Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China; (J.W.); (X.D.); (F.H.); (Y.G.); (M.L.)
| | - Feng Hua
- College of Physics and Electronic Information Engineering, Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China; (J.W.); (X.D.); (F.H.); (Y.G.); (M.L.)
| | - Yiting Gu
- College of Physics and Electronic Information Engineering, Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China; (J.W.); (X.D.); (F.H.); (Y.G.); (M.L.)
| | - Ming Li
- College of Physics and Electronic Information Engineering, Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China; (J.W.); (X.D.); (F.H.); (Y.G.); (M.L.)
| | - Tao Tang
- College of Physics and Electronic Information Engineering, Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China; (J.W.); (X.D.); (F.H.); (Y.G.); (M.L.)
- School of Electronic Information and Automation, Guilin University of Aerospace Technology, Guilin 541004, China
| |
Collapse
|
6
|
Yu J, Cai M, Cheng Q, Chen F, Bai JQ, Wei Y, Chen J, Sun S. Understanding the Poly (Triazine Imide) Crystals Formation Process: The Conversion from Heptazine to Triazine. Chemistry 2024; 30:e202302982. [PMID: 38031382 DOI: 10.1002/chem.202302982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
Poly (triazine imide) (PTI) generally obtained via ionothermal synthesis features extended π-conjugation and enhanced crystallinity. However, in-depth investigation of the polycondensation process for PTI is an onerous task due to multiple influencing factors and limited characterization techniques. Herein, to simplify the polymerization route and exclude non-essential factors, PTI was prepared by calcining only melamine and LiCl. This study aims to identify the pivotal role of LiCl in PTI formation, which can convert heptazine-based intermediates into more stable triazine-based PTI framework. Based on this discovery, we demonstrate the transformation process of the prepared samples from amorphous Bulk g-C3 N4 to regular PTI, and further prove that the reaction with LiCl causes disruption of heptazine covalent organic frameworks. Additionally, the PTI exhibits higher photocatalytic water splitting performance due to efficient charge carrier mobility and separation, as well as faster reaction kinetics. This discovery deepens understanding of the polycondensation process of PTI crystals and provides insights toward the rational design of crystalline carbon nitride-based semiconductors.
Collapse
Affiliation(s)
- Jiawen Yu
- School of Chemistry and Chemical Engineering, Anhui University, 230601, Hefei, Anhui, China
| | - Mengdie Cai
- School of Chemistry and Chemical Engineering, Anhui University, 230601, Hefei, Anhui, China
| | - Qin Cheng
- School of Chemistry and Chemical Engineering, Anhui University, 230601, Hefei, Anhui, China
| | - Fang Chen
- School of Chemistry and Chemical Engineering, Anhui University, 230601, Hefei, Anhui, China
| | - Jia-Qi Bai
- School of Chemistry and Chemical Engineering, Anhui University, 230601, Hefei, Anhui, China
| | - Yuxue Wei
- School of Chemistry and Chemical Engineering, Anhui University, 230601, Hefei, Anhui, China
| | - Jingshuai Chen
- School of Chemistry and Chemical Engineering, Anhui University, 230601, Hefei, Anhui, China
| | - Song Sun
- School of Chemistry and Chemical Engineering, Anhui University, 230601, Hefei, Anhui, China
| |
Collapse
|
7
|
Lu C, Cao D, Wang X, Wang D, Xuan Y, Yang D, Fu Z, Zhou Y, Shi W, Wang L. Construction of a floating photothermal-assisted photocatalytic system with a three-dimensional hollow porous network structure. CHEMOSPHERE 2024; 346:140634. [PMID: 37944761 DOI: 10.1016/j.chemosphere.2023.140634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/04/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Solar energy is the inevitable choice to achieve the low-carbon, green, and circular development of society, and photocatalysis technology is one of the shining pearls. To make full use of the solar spectrum and solve the shortcomings of the recovery difficulty of powdery materials and the loss of activity due to the influence of the external environment, it is possible to construct floating materials using melamine sponges to recover photocatalytic materials quickly. At the same time, floating materials can absorb oxygen in the air for the generation of active groups, effectively solving the problem of less O2 in the water. The carbon-based materials have excellent light absorption properties, high thermal conductivity, and excellent photothermal conversion efficiency and are ideal for constructing floating photothermal photocatalytic systems. As an example, we combined a cheap melamine sponge with urea, prepared a hollow porous network structure g-C3N4 (HPNCN) with a high specific surface area by direct thermal shrinkage method, and then attached the CoO to its surface by hydrothermal method to form a heterojunction with a suitable band gap. Various characterization tests verified the photothermal-photocatalytic properties. Among them, 30% CoO/HPNCN has the best photocatalytic degradation effect on tetracycline (TC), and the removal rate is 88.1%. After five cycles, the removal rate is only 5% lower than the initial, indicating that it has good stability and recyclability. We conducted an active ingredient capture experiment, ESR, and LC-MS analysis to clarify the intermediates and reaction mechanism of TC photocatalytic degradation. On this basis, the ECOSAR program and QSAR method were used to analyze the environmental toxicity of TC and its intermediate products. These results provide a broad prospect for the potential application of the floating photothermal-photocatalysis system in antibiotic pollution control and its application in other fields.
Collapse
Affiliation(s)
- Changyu Lu
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Center for Ecological and Environmental Geology Research, Hebei Geo University, Shijiazhuang, 050031, China
| | - Delu Cao
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Center for Ecological and Environmental Geology Research, Hebei Geo University, Shijiazhuang, 050031, China
| | - Xueying Wang
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Center for Ecological and Environmental Geology Research, Hebei Geo University, Shijiazhuang, 050031, China
| | - Dong Wang
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Yue Xuan
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Daiqiong Yang
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Center for Ecological and Environmental Geology Research, Hebei Geo University, Shijiazhuang, 050031, China
| | - Zhijing Fu
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Center for Ecological and Environmental Geology Research, Hebei Geo University, Shijiazhuang, 050031, China
| | - Yahong Zhou
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Center for Ecological and Environmental Geology Research, Hebei Geo University, Shijiazhuang, 050031, China.
| | - Weilong Shi
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Liping Wang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China.
| |
Collapse
|
8
|
Ashraf GA, Rasool RT, Al-Sulaimi S, Rasool RU, Hassan N, Ajmal Z, Mahmood Q, Khan A, Xiao C, Jie W. Construction of type-II scheme SnO@HfC photocatalyst for bisphenol A degradation via peroxymonosulfate activation; DFT and self-cleaning analysis. CHEMOSPHERE 2023; 341:140095. [PMID: 37683953 DOI: 10.1016/j.chemosphere.2023.140095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
In this study, novel stannous oxide@hafnium carbide (SnO@HfC) nanocomposite was successfully manufactured by an appropriate hydrothermal scheme which was utilized for the photocatalytic degradation of BPA by stimulation of peroxymonosulfate (PMS) and self-cleaning application. Numerous methods were applied for the characterization of photocatalyst and demonstrated the successful preparation of SnO@HfC nanocomposite. The crystal structures, band structures and density of states for SnO and HfC were explored by DFT analysis. The amazing PMS stimulation performance of SnO@HfC nanocomposite originated from the establishment of a heterojunction, which led to the enhancement of the light response aptitude and the electron conduction competence of the composite. BPA was degraded by 0.75 g/L PMS and SnO@HfC at neutral pH during the period of 60 min. In order to identify active groups in the reaction procedure, quenching experiments and electron paramagnetic resonance (EPR) approaches were also used. In the subsequent active species scavenging assays, where sulfate radicals, hydroxyl radicals, holes, and superoxide radicals were engaged in the degradation of BPA. While, liquid phase mass spectrometry (LC-MS) was used to pinpoint the intermediate metabolites in the course of degradation. SnO@HfC/PMS/light system delivered excellent TOC removal efficiency and less ions leaching. The SnO@HfC nanocomposite proved good durability and reusability in continuous cycle tests along with excellent self-cleaning function on the glass substrate. The SnO@HfC nanocomposite performs admirably in terms of self-cleaning application. The SnO@HfC nanocomposite is expected to be used in the future for the treatment of wastewater that contains pharmaceuticals due to its superior stability and reusability after five consecutive cycles.
Collapse
Affiliation(s)
- Ghulam Abbas Ashraf
- College of Environment, Hohai University, Nanjing, 210098, China; New Uzbekistan University, Mustaqillik Ave. 54, Tashkent, 100007, Uzbekistan
| | - Raqiqa Tur Rasool
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China; Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China.
| | - Sulaiman Al-Sulaimi
- Department of Biological Science and Chemistry, University of Nizwa, Nizwa, 611, Sultanate of Oman
| | - Rafiqat Ul Rasool
- Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Noor Hassan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China.
| | - Zeeshan Ajmal
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Qasim Mahmood
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientifc Research Center, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Aslam Khan
- College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Chu Xiao
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Wang Jie
- College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
9
|
Li YW, Li SZ, Zhao MB, Liu LY, Zhang ZF, Ma WL. Acid-induced tubular g-C 3N 4 for the selective generation of singlet oxygen by energy transfer: Implications for the photocatalytic degradation of parabens in real water environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165316. [PMID: 37414160 DOI: 10.1016/j.scitotenv.2023.165316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/14/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Parabens are widely present in aquatic environments and pose potential health risk. Although great progress has been made in the field of the photocatalytic degradation of parabens, the powerful Coulomb interactions between electrons and holes are the major limitations to photocatalytic performance. Hence, acid-induced tubular g-C3N4 (AcTCN) was prepared and applied for the removal of parabens from a real water environment. AcTCN not only increased the specific surface area and light absorption capacity, but also selectively generated 1O2 via an energy transfer-mediated oxygen activation pathway. The 1O2 yield of AcTCN was 11.8 times higher than that of g-C3N4. AcTCN exhibited remarkable removal efficiencies for parabens depending on the length of the alkyl group. Furthermore, the rate constants (k values) of parabens in ultrapure water were higher than those in tap and river water because of the presence of organic and inorganic species in real water environments. Two possible pathways for the photocatalytic degradation of parabens are proposed based on the identification of intermediates and theoretical calculations. In summary, this study offers theoretical support for the efficient enhancement of the photocatalytic performance of g-C3N4 for the removal of parabens in real water environments.
Collapse
Affiliation(s)
- Yu-Wei Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Shu-Zhi Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Min-Bo Zhao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China.
| |
Collapse
|