1
|
Michel L, Zhang J, Asimakopoulos A, Austad M, Bustamante P, Cecere JG, Cianchetti-Benedetti M, Colominas-Ciuró R, Dell'Omo G, De Pascalis F, Jaspers VLB, Quillfeldt P. Assessing perfluoroalkyl substance pollution in Central Mediterranean breeding shearwaters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:420-431. [PMID: 39919229 DOI: 10.1093/etojnl/vgae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/19/2024] [Indexed: 02/09/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic organofluorine compounds used in various products, which are highly durable in the environment and may pose risks to wildlife health. We investigated the blood cell concentrations of PFAS in breeding Scopoli's shearwaters (Calonectris diomedea) from three different colonies in the central and southern Mediterranean (Linosa, Malta, and La Maddalena). Shearwaters are flexible, high trophic level foragers, and foraging areas may differ according to sex and breeding stage. We examined inter- and intracolony differences in PFAS blood concentrations and compared them with exploited foraging areas and dietary tracers. Per- and polyfluoroalkyl substances were detected in all samples, with the major congeners detected in descending order being perfluoroctanesulfonic acid (PFOS), perfluoroundecanoic acid (PFuNA), perfluorododecanoic acid (PFDoDA), and perfluorotridecanoic acid (PFTriDA). The mean sum of PFAS during the chick-rearing phase was highest in the birds from Malta (145.1 ng/g dry wt, 95% confidence interval [CI] of the mean 106.8, 183.5) compared with Linosa (91.5 ng/g dry wt, 95% CI 72.9, 110.1) and La Maddalena (84.5 ng/g dry wt, 95% CI 61.7, 107.3), and the PFAS blood composition of shearwaters from La Maddalena and Malta differed. The PFAS concentrations in shearwaters from Linosa were higher during incubation than during chick-rearing, and males had higher PFAS concentrations than females during incubation. Some PFAS were associated with carbon and nitrogen stable isotope values. After baseline adjustment of stable isotope values, no differences were observed for adjusted δ15N and δ13C between the three colonies, suggesting that differences in PFAS levels attributed to diet were minor compared with regional differences. Our study highlights that shearwaters are useful biomonitors of PFAS exposure in remote marine areas.
Collapse
Affiliation(s)
- Lucie Michel
- Animal Ecology and Systematics, University of Giessen, Giessen, Germany
| | - Junjie Zhang
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Alexandros Asimakopoulos
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Martin Austad
- Animal Ecology and Systematics, University of Giessen, Giessen, Germany
- BirdLife Malta, Ta' Xbiex, Malta
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Jacopo G Cecere
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano dell'Emilia, Italy
| | | | | | | | - Federico De Pascalis
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano dell'Emilia, Italy
| | - Veerle L B Jaspers
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Petra Quillfeldt
- Animal Ecology and Systematics, University of Giessen, Giessen, Germany
| |
Collapse
|
2
|
Marciau C, Bestley S, Costantini D, Hicks O, Hindell M, Kato A, Raclot T, Ribout C, Ropert-Coudert Y, Angelier F. Sibling similarity in telomere length in Adélie penguin chicks. Comp Biochem Physiol A Mol Integr Physiol 2025; 302:111818. [PMID: 39884423 DOI: 10.1016/j.cbpa.2025.111818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
Early life telomere length is thought to influence and predict an individual's fitness. It has been shown to vary significantly in early life compared to adulthood. Investigating the factors influencing telomere length in young individuals is therefore of particular interest, especially as the relative importance of heredity compared to post-natal conditions remains largely uncertain. Adélie penguins are eco-indicators of the Antarctic ecosystem and their population are currently undergoing variable trajectories due to climate change. Here, we conducted a correlative study to investigate how telomere length was influenced by external and internal factors in Adélie penguin chicks. We found that most of the parameters we tested, including sex, body mass, brood size and hatching order as well as parental foraging trip duration, did not significantly influence chick telomere length at 32 days. However, siblings had similar telomere length, suggesting that hereditary factors play a stronger role in determining telomere length at this stage compared to the post-natal environment. In addition, telomere length and oxidative damage did not directly correlate but did interact in a complex way mediated by chick mass. High levels of oxidative damage were associated with longer telomeres in heavy chicks, whereas they were associated with shorter telomeres in light chicks. Although this mass-dependent relationship between telomere length and oxidative damage needs to be confirmed in future studies, it could reflect two different scenarios: (1) short telomeres may mimic the cost of poor nutritional conditions and oxidative damage in light chicks; (2) long telomeres may be maintained despite high oxidative damage in heavy chicks thanks to optimal nutritional conditions.
Collapse
Affiliation(s)
- Coline Marciau
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia; Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, Villiers en Bois, France.
| | - Sophie Bestley
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - David Costantini
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Universit'a, 01100 Viterbo, Italy; Unité Physiologie Moléculaire et Adaptation, UMR7221-Muséum National d'Histoire Naturelle-CNRS, 75005 Paris, France
| | - Olivia Hicks
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, Villiers en Bois, France
| | - Mark Hindell
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Akiko Kato
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, Villiers en Bois, France
| | - Thierry Raclot
- Institut Pluridisciplinaire Hubert Curien, CNRS-UMR7178, Strasbourg, France
| | - Cécile Ribout
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, Villiers en Bois, France
| | - Yan Ropert-Coudert
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, Villiers en Bois, France
| | - Frederic Angelier
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, Villiers en Bois, France
| |
Collapse
|
3
|
Aune AA, Gabrielsen GW, Ellis HI, Jenssen BM. Triiodothyronine (T 3), but not resting metabolic rate correlates positively with per- and polyfluoroalkyl substances (PFAS) in Arctic terns. ENVIRONMENTAL RESEARCH 2024; 263:120200. [PMID: 39427944 DOI: 10.1016/j.envres.2024.120200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
In Arctic seabirds, positive correlations between per- and polyfluoroalkyl substances (PFAS) and thyroid hormones (THs) and resting metabolic rate (RMR) have been documented. Herein we investigated levels and patterns of PFAS in Arctic terns (Sterna paradisaea) nesting in Kongsfjorden, Svalbard (Norway), and if circulating concentrations of PFAS correlated with their circulating concentrations of TH, and the RMR of the birds. The hypothesis was that there will be positive correlations between PFAS, TH, and RMR, indicating that PFAS-induced increases in plasma THs could be responsible for the increased RMR. The dominating PFAS in the terns were perfluorooctane sulfonate (PFOS), perfluoroundecanoate (PFUnDA) and perfluorotridecanoate (PFTrDA). The PFAS pattern was similar to what has been found in other seabirds in Kongsfjorden. There were positive correlations between several PFAS and total triiodothyronine (TT3) concentrations in the terns. When sex was accounted for there were significant correlations in female terns, but not in males. There were no correlations between PFAS and RMR or between TT3 and RMR. This indicates that there is no link between a PFAS-induced increase in plasma TT3 concentrations and a resultant increased RMR. The positive associations between blood PFAS concentrations and plasma TT3 concentrations may be a passive association, as both PFAS and T3 bind to thyroid hormone binding proteins (THBP). We recommend that interrelationships between circulating concentrations of PFAS, THs and THBP are investigated further to identify the role of PFAS as TH disrupting chemicals and chemicals that may affect the RMR in birds.
Collapse
Affiliation(s)
- Aslak Arnesson Aune
- Department of Biology, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway.
| | | | - Hugh I Ellis
- Department of Biology, University of San Diego, San Diego, CA, 92110, USA
| | - Bjorn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway; Department of Arctic Technology, University Centre in Svalbard, P.O. Box 156 N-9171 Longyearbyen, Norway.
| |
Collapse
|
4
|
Humann-Guilleminot S, Blévin P, Gabrielsen GW, Herzke D, Nikiforov VA, Jouanneau W, Moe B, Parenteau C, Helfenstein F, Chastel O. PFAS Exposure is Associated with a Lower Spermatic Quality in an Arctic Seabird. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19617-19626. [PMID: 39441666 PMCID: PMC11542889 DOI: 10.1021/acs.est.4c04495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Several studies have reported an increasing occurrence of poly- and perfluorinated alkyl substances (PFASs) in Arctic wildlife tissues, raising concerns due to their resistance to degradation. While some research has explored PFAS's physiological effects on birds, their impact on reproductive functions, particularly sperm quality, remains underexplored. This study aims to assess (1) potential association between PFAS concentrations in blood and sperm quality in black-legged kittiwakes (Rissa tridactyla), focusing on the percentage of abnormal spermatozoa, sperm velocity, percentage of sperm motility, and morphology; and (2) examine the association of plasma levels of testosterone, corticosterone, and luteinizing hormone with both PFAS concentrations and sperm quality parameters to assess possible endocrine disrupting pathways. Our findings reveal a positive correlation between the concentration of longer-chain perfluoroalkyl carboxylates (PFCA; C11-C14) in blood and the percentage of abnormal sperm in kittiwakes. Additionally, we observed that two other PFAS (i.e., PFOSlin and PFNA), distinct from those associated with sperm abnormalities, were positively correlated with the stress hormone corticosterone. These findings emphasize the potentially harmful substance-specific effects of long-chain PFCAs on seabirds and the need for further research into the impact of pollutants on sperm quality as a potential additional detrimental effect on birds.
Collapse
Affiliation(s)
- Ségolène Humann-Guilleminot
- Department
of Environmental Science, Radboud Institute for Biological and Environmental
Sciences (RIBES), Faculty of Science, Radboud
University, Nijmegen 6500, the Netherlands
- Laboratory
of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel 2000, Switzerland
| | - Pierre Blévin
- Centre
d’Etudes Biologiques de Chizé, UMR 7372 CNRS - Université de La Rochelle, Villiers-en-Bois 79360, France
- Akvaplan
niva AS, Fram Centre, Tromsø NO-9296, Norway
| | | | - Dorte Herzke
- Norwegian
Institute for Air Research, Fram Centre, Tromsø NO-9296, Norway
| | | | - William Jouanneau
- Centre
d’Etudes Biologiques de Chizé, UMR 7372 CNRS - Université de La Rochelle, Villiers-en-Bois 79360, France
| | - Børge Moe
- Norwegian
Institute for Nature Research, Trondheim NO-7034, Norway
| | - Charline Parenteau
- Centre
d’Etudes Biologiques de Chizé, UMR 7372 CNRS - Université de La Rochelle, Villiers-en-Bois 79360, France
| | - Fabrice Helfenstein
- Laboratory
of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel 2000, Switzerland
- Norwegian
Institute for Nature Research, Trondheim NO-7034, Norway
- Department
of Clinical Research, University of Bern, Bern 3010, Switzerland
| | - Olivier Chastel
- Centre
d’Etudes Biologiques de Chizé, UMR 7372 CNRS - Université de La Rochelle, Villiers-en-Bois 79360, France
| |
Collapse
|
5
|
Léandri-Breton DJ, Jouanneau W, Legagneux P, Tarroux A, Moe BR, Angelier F, Blévin P, Bråthen VS, Fauchald P, Gabrielsen GW, Herzke D, Nikiforov VA, Elliott KH, Chastel O. Winter Tracking Data Suggest that Migratory Seabirds Transport Per- and Polyfluoroalkyl Substances to Their Arctic Nesting Site. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12909-12920. [PMID: 38991194 DOI: 10.1021/acs.est.4c02661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Seabirds are often considered sentinel species of marine ecosystems, and their blood and eggs utilized to monitor local environmental contaminations. Most seabirds breeding in the Arctic are migratory and thus are exposed to geographically distinct sources of contamination throughout the year, including per- and polyfluoroalkyl substances (PFAS). Despite the abundance and high toxicity of PFAS, little is known about whether blood concentrations at breeding sites reliably reflect local contamination or exposure in distant wintering areas. We tested this by combining movement tracking data and PFAS analysis (nine compounds) from the blood of prelaying black-legged kittiwakes (Rissa tridactyla) nesting in Arctic Norway (Svalbard). PFAS burden before egg laying varied with the latitude of the wintering area and was negatively associated with time upon return of individuals at the Arctic nesting site. Kittiwakes (n = 64) wintering farther south carried lighter burdens of shorter-chain perfluoroalkyl carboxylates (PFCAs, C9-C12) and heavier burdens of longer chain PFCAs (C13-C14) and perfluorooctanesulfonic acid compared to those wintering farther north. Thus, blood concentrations prior to egg laying still reflected the uptake during the previous wintering stage, suggesting that migratory seabirds can act as biovectors of PFAS to Arctic nesting sites.
Collapse
Affiliation(s)
- Don-Jean Léandri-Breton
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC H9X 3 V9, Canada
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372-CNRS & La Rochelle Université, 79360 Villiers-en-Bois, France
| | - William Jouanneau
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372-CNRS & La Rochelle Université, 79360 Villiers-en-Bois, France
- Norwegian Polar Institute, Fram Centre, 9296 Tromso̷, Norway
| | - Pierre Legagneux
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372-CNRS & La Rochelle Université, 79360 Villiers-en-Bois, France
- Département de Biologie, Université Laval, Québec, QC G1 V0A6, Canada
| | - Arnaud Tarroux
- Norwegian Institute for Nature Research, Fram Centre, 9296 Tromso̷, Norway
| | - Bo Rge Moe
- Norwegian Institute for Nature Research, 7485, Trondheim, Norway
| | - Frédéric Angelier
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372-CNRS & La Rochelle Université, 79360 Villiers-en-Bois, France
| | | | - Vegard S Bråthen
- Norwegian Institute for Nature Research, 7485, Trondheim, Norway
| | - Per Fauchald
- Norwegian Institute for Nature Research, Fram Centre, 9296 Tromso̷, Norway
| | | | - Dorte Herzke
- Norwegian Institute for Air Research (NILU), Fram Centre, 9296 Tromso̷, Norway
| | | | - Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC H9X 3 V9, Canada
| | - Olivier Chastel
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372-CNRS & La Rochelle Université, 79360 Villiers-en-Bois, France
| |
Collapse
|
6
|
Schutten K, Morrill A, Chandrashekar A, Stevens B, Parmley EJ, Cunningham JT, Robertson GJ, Mallory ML, Jardine C, Provencher JF. Plastic ingestion, accumulated heavy metals, and health metrics of four Larus gull species feeding at a coastal landfill in eastern Canada. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135107. [PMID: 39013322 DOI: 10.1016/j.jhazmat.2024.135107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/15/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
The objectives of this research were to assess ingested plastics and accumulated heavy metals in four urban gull species. Additionally, the relationships between ingested plastics and selected demographic and health metrics were assessed. Between 2020-2021 during the non-breeding seasons, 105 gulls (46 American herring gulls (HERG, Larus argentatus smithsonianus), 39 great black-backed gulls (GBBG, Larus marinus), 16 Iceland gulls (Larus glaucoides), 4 glaucous gulls (Larus hyperboreus)) were killed at a landfill in coastal Newfoundland and Labrador, Canada, as part of separate, permitted kill-to-scare operations related to aircraft safety. Birds were necropsied, the upper gastrointestinal tract contents were processed using standard techniques, and livers were analyzed for accumulated As, Cd, Hg, and Pb. The relationships between ingested plastics, demographics, and health metrics were assessed in HERG and GBBG. Across all four species, 85 % of birds had ingested at least one piece of anthropogenic debris, with 79 % ingesting at least one piece of plastic. We detected interspecific differences in plastic ingestion and hepatic trace metals, with increased ingested plastics detected in GBBG compared with HERG. For GBBG, levels of ingested plastic were relatively greater for birds with higher scaled mass index, while HERG with more ingested plastic had higher liver lead concentrations.
Collapse
Affiliation(s)
- Kerry Schutten
- University of Guelph, Department of Pathobiology, 50 Stone Rd E., Guelph, N1G 2W1 Ontario, Canada.
| | - André Morrill
- Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Ottawa, K1A 0H3 Ontario, Canada
| | - Akshaya Chandrashekar
- University of Guelph, Department of Pathobiology, 50 Stone Rd E., Guelph, N1G 2W1 Ontario, Canada
| | - Brian Stevens
- Canadian Wildlife Health Cooperative, University of Guelph, 50 Stone Rd E., Guelph, N1G 2W1 Ontario, Canada
| | - E Jane Parmley
- University of Guelph, Department of Population Medicine, 50 Stone Rd E., N1G 2W1 Guelph, Ontario, Canada
| | - Joshua T Cunningham
- Environment and Climate Change Canada, Wildlife and Landscape Science Directorate, 6 Bruce St, Mount Pearl, Newfoundland and Labrador A1N 4T3, Canada
| | - Gregory J Robertson
- Environment and Climate Change Canada, Wildlife and Landscape Science Directorate, 6 Bruce St, Mount Pearl, Newfoundland and Labrador A1N 4T3, Canada
| | - Mark L Mallory
- Acadia University, Department of Biology, 15 University Ave, Wolfville, Nova Scotia, Canada
| | - Claire Jardine
- University of Guelph, Department of Pathobiology, 50 Stone Rd E., Guelph, N1G 2W1 Ontario, Canada
| | - Jennifer F Provencher
- Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Ottawa, K1A 0H3 Ontario, Canada
| |
Collapse
|
7
|
Witt CC, Gadek CR, Cartron JLE, Andersen MJ, Campbell ML, Castro-Farías M, Gyllenhaal EF, Johnson AB, Malaney JL, Montoya KN, Patterson A, Vinciguerra NT, Williamson JL, Cook JA, Dunnum JL. Extraordinary levels of per- and polyfluoroalkyl substances (PFAS) in vertebrate animals at a New Mexico desert oasis: Multiple pathways for wildlife and human exposure. ENVIRONMENTAL RESEARCH 2024; 249:118229. [PMID: 38325785 DOI: 10.1016/j.envres.2024.118229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/23/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) in the environment pose persistent and complex threats to human and wildlife health. Around the world, PFAS point sources such as military bases expose thousands of populations of wildlife and game species, with potentially far-reaching implications for population and ecosystem health. But few studies shed light on the extent to which PFAS permeate food webs, particularly ecologically and taxonomically diverse communities of primary and secondary consumers. Here we conducted >2000 assays to measure tissue-concentrations of 17 PFAS in 23 species of mammals and migratory birds at Holloman Air Force Base (AFB), New Mexico, USA, where wastewater catchment lakes form biodiverse oases. PFAS concentrations were among the highest reported in animal tissues, and high levels have persisted for at least three decades. Twenty of 23 species sampled at Holloman AFB were heavily contaminated, representing middle trophic levels and wetland to desert microhabitats, implicating pathways for PFAS uptake: ingestion of surface water, sediments, and soil; foraging on aquatic invertebrates and plants; and preying upon birds or mammals. The hazardous long carbon-chain form, perfluorooctanosulfonic acid (PFOS), was most abundant, with liver concentrations averaging >10,000 ng/g wet weight (ww) in birds and mammals, respectively, and reaching as high 97,000 ng/g ww in a 1994 specimen. Perfluorohexanesulfonic acid (PFHxS) averaged thousands of ng/g ww in the livers of aquatic birds and littoral-zone house mice, but one order of magnitude lower in the livers of upland desert rodent species. Piscivores and upland desert songbirds were relatively uncontaminated. At control sites, PFAS levels were strikingly lower on average and different in composition. In sum, legacy PFAS at this desert oasis have permeated local aquatic and terrestrial food webs across decades, severely contaminating populations of resident and migrant animals, and exposing people via game meat consumption and outdoor recreation.
Collapse
Affiliation(s)
- Christopher C Witt
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Chauncey R Gadek
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Environmental Stewardship, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Jean-Luc E Cartron
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Daniel B. Stephens & Associates, Inc., 6020 Academy Road NE, Suite 100, Albuquerque, NM, 87109, USA
| | - Michael J Andersen
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Mariel L Campbell
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Marialejandra Castro-Farías
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ethan F Gyllenhaal
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Andrew B Johnson
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jason L Malaney
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; New Mexico Museum of Natural History and Science, Albuquerque, NM, 87104, USA
| | - Kyana N Montoya
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Andrew Patterson
- Eurofins Environment Testing America, West Sacramento, CA, 95605, USA
| | - Nicholas T Vinciguerra
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jessie L Williamson
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| | - Joseph A Cook
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jonathan L Dunnum
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
8
|
Wells MR, Coggan TL, Stevenson G, Singh N, Askeland M, Lea MA, Philips A, Carver S. Per- and polyfluoroalkyl substances (PFAS) in little penguins and associations with urbanisation and health parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169084. [PMID: 38056658 DOI: 10.1016/j.scitotenv.2023.169084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Per- and Polyfluoroalkyl substances (PFAS) are increasingly detected in wildlife and present concerning and unknown health risks. While there is a growing body of literature describing PFAS in seabird species, knowledge from temperate Southern Hemisphere regions is lacking. Little penguins (Eudyptula minor) can nest and forage within heavily urbanised coastal environments and hence may be at risk of exposure to pollutants. We analysed scat contaminated nesting soils (n = 50) from 17 colonies in lutruwita/Tasmania for 16 PFAS, plasma samples (n = 45) from nine colonies, and three eggs for 49 PFAS. We detected 14 PFAS across the sample types, with perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic acid (PFHxS) most commonly detected. Mean concentration of PFOS in plasma was 2.56 ± 4.3 ng/mL (
Collapse
Affiliation(s)
- Melanie R Wells
- Department of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia; Institute for Marine and Antarctic Studies, Battery Point 7004, Tasmania, Australia.
| | - Timothy L Coggan
- Environment Protection Authority Victoria, 200 Victoria Street, Carlton 3053, Victoria, Australia; ADE Consulting Group, U 4/95 Salmon Street, Port Melbourne 3207, Victoria, Australia
| | - Gavin Stevenson
- Australian Ultra-Trace Laboratory, National Measurement Institute, North Ryde 2113, New South Wales, Australia
| | - Navneet Singh
- ADE Consulting Group, U 4/95 Salmon Street, Port Melbourne 3207, Victoria, Australia
| | - Matthew Askeland
- ADE Consulting Group, U 4/95 Salmon Street, Port Melbourne 3207, Victoria, Australia
| | - Mary-Anne Lea
- Institute for Marine and Antarctic Studies, Battery Point 7004, Tasmania, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Annie Philips
- Wildlife Veterinary Consultant, Hobart 7000, Tasmania, Australia
| | - Scott Carver
- Department of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia; Odum School of Ecology, University of Georgia, GA, USA 30602; Center for the Ecology of Infectious Diseases, University of Georgia, GA, USA 30602
| |
Collapse
|