1
|
Polechońska L, Klink A, Sokołowska K. Rising temperature impacts the trace metal uptake and toxicity in aquatic plants - A case study of Ni and Co in Elodea canadensis Michx. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177307. [PMID: 39481559 DOI: 10.1016/j.scitotenv.2024.177307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
The global warming and environmental pollution are two crucial contemporary concerns. As both are strongly connected with urbanisation and anthropogenic impact on the environment, they often affect the ecosystem simultaneously. Aquatic habitats are particularly susceptible to thermal and chemical pollution. Temperature influences nearly all physical and chemical features of water bodies and trace metals are known for their toxicity to aquatic organisms. However, effects of multiple stressors, cumulative effects as well as response and possible adaptations of organisms are still open questions. Thus, the aim of this study was to characterize the combined effect of temperature and two trace metals (Co and Ni) on the metal bioaccumulation and viability of a model aquatic macrophyte Elodea canadensis Michx. We exposed shoots of E. canadensis to three temperatures and four metal concentrations (together and separately) applied at environmentally relevant levels. Shoot growth and metal concentration in plants were measured after 120 h. Moreover, after 24, 72 and 120 h the changes in leaf cell morphology and viability were analysed. The results showed that metal accumulation was dose-dependent and was not affected by temperature. The growth of plants was not affected by temperature nor metals. On the other hand, the exposure to Co and Ni and the elevated temperature negatively affected cell viability of E. canadensis leaves which manifested by increased permeability of plasma membranes and visible necroses. The greatest damaged leaf areas were determined after 120 h in the highest concentration of both metals and the highest temperature which indicates synergistic impact of trace metals and temperature on performance of macrohydrophytes. The observed phenomena suggest that global warming and/or thermal pollution may have implications for the performance of aquatic macrophytes in chemically polluted waters, their ability to spread and colonize polluted habitats and their suitability in phytoremediation.
Collapse
Affiliation(s)
- Ludmiła Polechońska
- University of Wrocław, Faculty of Biological Sciences, Department of Ecology, Biogeochemistry and Environmental Protection, Kanonia 6/8, 50-328 Wrocław, Poland.
| | - Agnieszka Klink
- University of Wrocław, Faculty of Biological Sciences, Department of Ecology, Biogeochemistry and Environmental Protection, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Katarzyna Sokołowska
- University of Wrocław, Faculty of Biological Sciences, Department of Plant Developmental Biology, Kanonia 6/8, Wrocław 50-328, Poland
| |
Collapse
|
2
|
Wang C, Zhang Y, Wang C, He M. Enhancing aggregation of microalgae on polystyrene microplastics by high light: Processes, drivers, and environmental risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135062. [PMID: 38959831 DOI: 10.1016/j.jhazmat.2024.135062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/06/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Microplastics (MPs) are emerging pollutants, causing potential threats to aquatic ecosystems and serious concern in aggregating with microalgae (critical primary producers). When entering water bodies, MPs are expected to sink below the water surface and disperse into varying water compartments with different light intensities. However, how light influences the aggregation processes of algal cells onto MPs and the associated molecular coupling mechanisms and derivative risks remain poorly understood. Herein, we investigated the aggregation behavior between polystyrene microplastics (mPS, 10 µm) and Chlorella pyrenoidosa under low (LL, 15 μmol·m-2·s-1), normal (NL, 55 μmol·m-2·s-1), and high light (HL, 150 μmol·m-2·s-1) conditions from integrated in vivo and in silico assays. The results indicated that under LL, the mPS particles primarily existed independently, whereas under NL and HL, C. pyrenoidosa tightly bounded to mPS by secreting more protein-rich extracellular polymeric substances. Infrared spectroscopy analysis and density functional theory calculation revealed that the aggregation formation was driven by non-covalent interaction involving van der Waals force and hydrogen bond. These processes subsequently enhanced the deposition and adherence capacity of mPS and relieved its phytotoxicity. Overall, our findings advance the practical and theoretical understanding of the ecological impacts of MPs in complex aquatic environments.
Collapse
Affiliation(s)
- Chun Wang
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; College of Oceanography, Hohai University, Nanjing 210024, China
| | - Yaru Zhang
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Changhai Wang
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Lianyungang 222005, China.
| | - Meilin He
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Deo L, Benjamin LK, Osborne JW. Critical review on unveiling the toxic and recalcitrant effects of microplastics in aquatic ecosystems and their degradation by microbes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:896. [PMID: 39230754 DOI: 10.1007/s10661-024-13023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Production of synthetic plastic obtained from fossil fuels are considered as a constantly growing problem and lack in the management of plastic waste has led to severe microplastic pollution in the aquatic ecosystem. Plastic particles less than 5mm are termed as microplastics (MPs), these are pervasive in water and soil, it can also withstand longer period of time with high durability. It can be broken down into smaller particles and can be adsorbed by various life-forms. Most marine organisms tend to consume plastic debris that can be accumulated easily into the vertebrates, invertebrates and planktonic entities. Often these plastic particles surpass the food chain, resulting in the damage of various organs and inhibiting the uptake of food due to the accumulation of microplastics. In this review, the physical and chemical properties of microplastics, as well as their effects on the environment and toxicity of their chemical constituents are discussed. In addition, the paper also sheds light on the potential of microorganisms such as bacteria, fungi, and algae which play a pivotal role in the process of microplastics degradation. The mechanism of microbial degradation, the factors that affect degradation, and the current advancements in genetic and metabolic engineering of microbes to promote degradation are also summarized. The paper also provides information on the bacterial, algal and fungal degradation mechanism including the possible enzymes involved in microplastic degradation. It also investigates the difficulties, limitations, and potential developments that may occur in the field of microbial microplastic degradation.
Collapse
Affiliation(s)
- Loknath Deo
- Department of Plant Pathology and Entomology, VIT-School of Agricultural Innovation and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Lincy Kirubhadharsini Benjamin
- Department of Plant Pathology and Entomology, VIT-School of Agricultural Innovation and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Jabez William Osborne
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
4
|
Zhuang M, Qiao C, Han L, Bi Y, Cao M, Wang S, Guo L, Pang R, Xie H. Multi-omics analyses reveal the responses of wheat (Triticum aestivum L.) and rhizosphere bacterial community to nano(micro)plastics stress. J Nanobiotechnology 2024; 22:507. [PMID: 39180071 PMCID: PMC11344414 DOI: 10.1186/s12951-024-02777-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
The pervasive existence of nanoplastics (NPs) and microplastics (MPs) in soil has become a worldwide environmental concern. N/MPs exist in the environment in a variety of forms, sizes, and concentrations, while multi-omics studies on the comprehensive impact of N/MPs with different properties (e.g. type and size) on plants remain limited. Therefore, this study utilized multi-omics analysis methods to investigate the effects of three common polymers [polyethylene-NPs (PE-NPs, 50 nm), PE-MPs (PE-MPs, 10 μm), and polystyrene-MPs (PS-MPs, 10 μm)] on the growth and stress response of wheat, as well as the rhizosphere microbial community at two concentrations (0.05 and 0.5 g/kg). PS and PE exhibited different effects for the same particle size and concentration. PE-NPs had the most severe stress effects, resulting in reduced rhizosphere bacteria diversity, plant biomass, and antioxidant enzyme activity while increasing beneficial bacteria richness. N/MPs altered the expression of nitrogen-, phosphorus-, and sulfur-related functional genes in rhizosphere bacteria, thereby affecting photosynthesis, as well as metabolite and gene levels in wheat leaves. Partial least squares pathway models (PLSPMs) indicated that concentration, size, and type play important roles in the impact of N/MPs on the plant ecological environment, which could have essential implications for assessing the environmental risk of N/MPs.
Collapse
Affiliation(s)
- Ming Zhuang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, 2 Yuanmingyuan Western Road, Haidian District, Beijing, 100193, China
| | - Chengkui Qiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453514, China.
| | - Lijun Han
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, 2 Yuanmingyuan Western Road, Haidian District, Beijing, 100193, China.
| | - Yingying Bi
- SCIEX Application Center, Shanghai, 200233, China
| | - Mengyuan Cao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, 2 Yuanmingyuan Western Road, Haidian District, Beijing, 100193, China
| | - Shiyu Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, 2 Yuanmingyuan Western Road, Haidian District, Beijing, 100193, China
| | - Linlin Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Rongli Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Hanzhong Xie
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| |
Collapse
|
5
|
Zhang Z, Yu H, Tao M, Lv T, Li F, Yu D, Liu C. Mechanistic insight into the impact of polystyrene microparticle on submerged plant during asexual propagules germination to seedling: Internalization in functional organs and alterations of physiological phenotypes. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133929. [PMID: 38452672 DOI: 10.1016/j.jhazmat.2024.133929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Asexual reproduction is one of the most important propagations in aquatic plants. However, there is a lack of information about the growth-limiting mechanisms induced by microplastics on the submerged plant during asexual propagule germination to seedling. Hence, we investigated the effects of two sizes (2 µm, 0.2 µm) and three concentrations (0.5 mg/L, 5 mg/L, and 50 mg/L) of polystyrene microplastics (PSMPs) on Potamogeton crispus turion germination and seedling growth. Both PSMPs sizes were found in P. crispus seedling tissues. Metabolic profile alterations were observed in leaves, particularly affecting secondary metabolic pathways and ATP-binding cassette transporters. Metal elements are indispensable cofactors for photosynthesis; however, alterations in the metabolic profile led to varying degrees of reduced concentrations in magnesium, iron, copper, and zinc within P. crispus. Therefore, the maximum quantum yield of photosystem II significantly decreased in all concentrations with 0.2 µm-PSMPs, and at 50 mg/L with 2 µm-PSMPs. These findings reveal that internalization of microplastics, nutrient absorption inhibition, and metabolic changes contribute to the negative impact on P. crispus seedlings.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Hongwei Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Min Tao
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Tian Lv
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Fuchao Li
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Dan Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Chunhua Liu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China.
| |
Collapse
|