1
|
Chen F, Wei X, Gong Y, Chen D, Lu T. Effects of low-molecular-weight organic acids on the transport of polystyrene nanoplastics: An insight at the structure of organic acids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175204. [PMID: 39098425 DOI: 10.1016/j.scitotenv.2024.175204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Plastic nanoparticles are extensively used in various products, leading to inevitable pollution in soil. Understanding their transport in soils where various organic substances exist is crucial. This study examined the impact of low-molecular-weight organic acids (LMWOAs) on the transport of polystyrene nanoplastics (PS-NPs) through saturated quartz sand. The experiments involved three dibasic acids-malonic acid (MA1), malic acid (MA2) and tartaric acid (TA) - and four monobasic acids- formic acid (FA), acetic acid (AA), propanoic acid (PA) and glycolic acid (GA) -under different pH levels (4.0, 5.5, 7.0) and in the presence of cations (Na+, Ca2+). The results demonstrated that in the presence of Na+, dibasic acids significantly enhanced PS-NPs transport, with TA being the most effective, followed by MA2 and MA1. This enhancement is attributed to the adsorption of LMWOAs onto the nanoparticles and sand, creating a more negative ζ-potential, which increases the electrostatic repulsion and decreases the PS-NPs deposition, thereby facilitating the transport. Applying the Derjaguin-Landau-Verwey-Overbeek theory, higher pH levels increased the energy barrier and secondary energy minimum, decreasing PS-NPs deposition. Moreover, dibasic acids significantly enhanced the hydrophilicity of PS-NPs. Conversely, monobasic acids, except for GA, slightly reduced the hydrophilicity of PS-NPs, as indicated by a small increase in the water contact angle, hereby minimally affecting PS-NPs transport. As for GA, although it is a monobasic acid, the additional -OH group in its molecular structure promoted PS-NPs transport, similar to dibasic acids. For example, GA also significantly enhanced the hydrophilicity of PS-NPs. In the presence of Ca2+, the enhancement of PS-NPs transport by LMWOAs was comparable to that with Na+, primarily due to the complex-forming and bridging effects of Ca2+ with the organic acids and PS-NPs. These findings provide important insights into predicting and analyzing the transport behaviors of PS-NPs.
Collapse
Affiliation(s)
- Feiyu Chen
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xuan Wei
- Jinjiang Bureau of Hydrology and Water Resources Survey, Changjiang Water Resources Committee, Jinzhou 434020, China
| | - Yi Gong
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Dong Chen
- Jiangsu Surveying and Design Institute of Water Resources Co., Ltd, Yangzhou 225009, China
| | - Taotao Lu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China; Department of Hydrology, Bayreuth Center of Ecology and Environmental Research (BAYCEER), University of Bayreuth, Bayreuth 95440, Germany.
| |
Collapse
|
2
|
Zhang M, Hou J, Xia J, Wu J, You G, Miao L. The selective occurrence of ripening effect makes the cotransport of various sized nanoplastics in seawater-saturated and freshwater-saturated porous media significantly different. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136189. [PMID: 39423641 DOI: 10.1016/j.jhazmat.2024.136189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
We explored the coadsorption and cotransport (single, binary, and ternary systems) of varying sized (50, 200, and 500 nm) Polymethylmethacrylate (PMMA) nanoplastics (NPs) with different concentration ratios in freshwater-saturated and seawater-saturated porous media. It was found that ripening effect occurred selectively, with ripening more likely to occur in seawater relative to freshwater, resulting in significantly different cotransport and coadsorption of varying sized NPs in freshwater-saturated and seawater-saturated porous media. In freshwater, there was no obvious ripening effect happening. In both binary and ternary systems, as the concentration of coexisting PMMA NPs increased, the adsorption and retention of coexisting other sized PMMA NPs were inhibited due to competition for adsorption sites. In seawater, coexisting varying sized NPs promoted adsorption and retention of each other in saturated porous media due to increased roughness and ripening effect. The NP aggregate size and the increase in surface roughness of media grains brought about by the increase in size variety of NPs dominated the cotransport of varying sized NPs in seawater-saturated porous media. The findings of this study provide help for clarifying the fate of NPs presented in real environments in porous media of freshwater and seawater systems.
Collapse
Affiliation(s)
- Mingzhi Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Jun Xia
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
3
|
Zhang M, Hou J, Xia J, Wu J, You G, Miao L. The long-term release and particle fracture behaviors of nanoplastics retained in porous media: Effects of surfactants, natural organic matters, antibiotics, and bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171563. [PMID: 38460706 DOI: 10.1016/j.scitotenv.2024.171563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
The transport of nanoplastics (NPs) in porous media has received a lot of attention, but the studies on the long-term release of NPs retained in porous media and the particle fracture during this process are seriously lacking. For filling this deficiency, we examined the individual or synergistic effects of surfactants, natural organic matters (NOMs), antibiotics, and bacteria on the desorption, long-term release, and particle fracture behaviors of polystyrene NPs (PS-NPs) retained in porous media. It was found that the change in hydrophilicity of PS-NPs dominated the long-term release of PS-NPs retained in porous media when surfactants were present. In the single system of surfactants and the dual system of surfactants and NOMs, the release of PS-NPs were improved owing to the increasing hydrophilicity of PS-NPs, although cationic surfactants also reduced the electrostatic repulsion between PS-NPs and porous media. Increasing antibiotic concentration reduced the electrostatic repulsion between PS-NPs and porous media to inhibit the release of PS-NPs. When bacteria were present whether containing antibiotics or not, the effects on roughness of PS-NPs dominated the release of PS-NPs. The effects of surfactants and NOMs on the PS-NP desorption were similar with the long-term release, with changes in hydrophilicity dominating the process. Whereas the effects of antibiotics and bacteria on the PS-NP desorption were different with the long-term release. Surfactants and NOMs in the presence of surfactants inhibited the fracture of PS-NPs by increasing the hydrophilicity of PS-NPs brought about the coating of water molecules on PS-NPs for protection. Antibiotics had no significant effects on the fracture of PS-NPs due to unaltered vertical forces on PS-NPs and no protective effect. Bacteria in the presence or absence of antibiotics inhibited the fracture of PS-NPs by coating PS-NPs retained in porous media to protect PS-NPs from fracture.
Collapse
Affiliation(s)
- Mingzhi Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Jun Xia
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
4
|
Zhang G, Wang B, Jiang N, Pang K, Wu W, Yin X. Effect of water-soluble polymers on the transport of functional group-modified polystyrene nanoplastics in goethite-coated saturated porous media. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134044. [PMID: 38493628 DOI: 10.1016/j.jhazmat.2024.134044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
The research on the impact of water-soluble polymers (WSPs) on the migration and fate of plastic particles is extremely limited. This article explored the effects of polyacrylic acid (PAA, a common WSP) and physicochemical factors on the transport of polystyrene nanoparticles (PSNPs-NH2/COOH) with different functional groups in QS (quartz sand) and FOS (goethite-modified quartz sand, simulates mineral colloids). Research has shown that PAA can selectively adsorb onto the surface of PSNPs-NH2, forming ecological corona heterogeneous aggregates. This process increased the spatial hindrance and elastic repulsion, resulting in the recovery of PSNPs-NH2 always exceeding that of PSNPs-COOH. Overall, PAA can hinder the migration of PSNPs in QS but can promote their migration in FOS. When multivalent cations coexist with PAA, the transport of PSNPs in the media is primarily affected by cation bridging and CH-cation-π interaction. The presence of oxyanions and PAA prevents PSNPs from following the Hofmeister rule and promotes their migration (PO43-: 82.34 ± 0.16% to 94.63 ± 2.82%>SO42-: 81.38 ± 2.73% to 91.15 ± 0.93%>NO3-: 55.85 ± 0.70%-87.16 ± 3.80%). The findings of this study contribute significantly to a better understanding of the migration of WSPs and group-modified NPs in complex saturated porous media.
Collapse
Affiliation(s)
- Guangcai Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Binying Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Nan Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Kejing Pang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wenbing Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China.
| |
Collapse
|
5
|
Zhang M, Hou J, Xia J, Wu J, You G, Miao L. Statuses, shortcomings, and outlooks in studying the fate of nanoplastics and engineered nanoparticles in porous media respectively and borrowable sections from engineered nanoparticles for nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169638. [PMID: 38181944 DOI: 10.1016/j.scitotenv.2023.169638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
This review discussed the research statuses, shortcomings, and outlooks for the fate of nanoplastics (NPs) and engineered nanoparticles (ENPs) in porous media and borrowable sections from ENPs for NPs. Firstly, the most important section was that we reviewed the research statuses on the fate of NPs in porous media and the main influencing factors, and explained the influencing mechanisms. Secondly, in order to give NPs a reference of research ideas and influence mechanisms, we also reviewed the research statuses on the fate of ENPs in porous media and the factors and mechanisms influencing the fate. The main mechanisms affecting the transport of ENPs were summarized (Retention or transport modes: advection, diffusion, dispersion, deposition, adsorption, blocking, ripening, and straining; Main forces and actions: Brownian motion, gravity, electrostatic forces, van der Waals forces, hydration, filtration, bridging; Affecting elements of the forces and actions: the ENP and media grain surface functional groups, size, shape, zeta potential, density, hydrophobicity, and roughness). Instead of using the findings of ENPs, thorough study on NPs was required because NPs and ENPs differed greatly. Based on the limited existing studies on the NP transport in porous media, we found that although the conclusions of ENPs could not be applied to NPs, most of the influencing mechanisms summarized from ENPs were applicable to NPs. Combining the research thoughts of ENPs, the research statuses of NPs, and some of our experiences and reflections, we reviewed the shortcomings of the current studies on the NP fate in porous media as well as the outlooks of future research. This review is very meaningful for clarifying the research statuses and influence mechanisms for the NP fate in porous media, as well as providing a great deal of inspiration for future research directions about the NP fate in porous media.
Collapse
Affiliation(s)
- Mingzhi Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Jun Xia
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|