1
|
Zhang M, Huang M, Rui L, Huan X, Li Y, Huang Y, Wei W. Polystyrene microplastics as carriers for nano-hydroxyapatite particles: Impact of surface functionalization and mechanistic insights. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135680. [PMID: 39213774 DOI: 10.1016/j.jhazmat.2024.135680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The potential of microplastics (MPs) to act as carriers for contaminants or engineered nanomaterials is of rising concern. However, directly determining the vector effect of polystyrene (PS) MPs towards nano-hydroxyapatite (nHAP) particles, a typical nano phosphorus fertilizer and soil remediation material, has been rarely studied. In this study, the interaction of differentially surface functionalized PS MPs with nHAP were investigated through batch experiments under different solution chemistry conditions. The results demonstrated that nHAP had the highest attachment/adsorption affinity onto carboxyl-functionalized PS, followed by bare PS and amino-functionalized PS under near-neutral pH conditions. Adsorption of nHAP exhibited a strong pH-dependent behavior with PS MPs, increasing under acidic-neutral pH (3-7) and decreasing at higher pH values. The presence of humic acid and NaCl hindered the adsorption of nHAP onto MPs. Scanning electron microscopy observations revealed a rod-like morphology for adsorbed nHAP, which was randomly distributed on MPs surface. Surface complexation and cation-π interaction were mainly responsible for the adsorption of nHAP as revealed by multiple spectroscopic analyses. These results provide mechanistic insights into nHAP-PS interactions and expound the effect of surface functionalization of PS on binding mechanisms, and thus bring important clues for better understanding the vector effects of MPs towards nanoparticles.
Collapse
Affiliation(s)
- Mengjia Zhang
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
| | - Mengjie Huang
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China
| | - Linping Rui
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China
| | - Xinyu Huan
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China
| | - Yuanyi Li
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China
| | - Yao Huang
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Wei Wei
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China.
| |
Collapse
|
2
|
Liu N, Zhao J, Du J, Hou C, Zhou X, Chen J, Zhang Y. Non-phytoremediation and phytoremediation technologies of integrated remediation for water and soil heavy metal pollution: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174237. [PMID: 38942300 DOI: 10.1016/j.scitotenv.2024.174237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Since the 1980s, there has been increasing concern over heavy metal pollution remediation. However, most research focused on the individual remediation technologies for heavy metal pollutants in either soil or water. Considering the potential migration of these pollutants, it is necessary to explore effective integrated remediation technologies for soil and water heavy metals. This review thoroughly examines non-phytoremediation technologies likes physical, chemical, and microbial remediation, as well as green remediation approaches involving terrestrial and aquatic phytoremediation. Non-phytoremediation technologies suffer from disadvantages like high costs, secondary pollution risks, and susceptibility to environmental factors. Conversely, phytoremediation technologies have gained significant attention due to their sustainable and environmentally friendly nature. Enhancements through chelating agents, biochar, microorganisms, and genetic engineering have demonstrated improved phytoremediation remediation efficiency. However, it is essential to address the environmental and ecological risks that may arise from the prolonged utilization of these materials and technologies. Lastly, this paper presents an overview of integrated remediation approaches for addressing heavy metal contamination in groundwater-soil-surface water systems and discusses the reasons for the research gaps and future directions. This paper offers valuable insights for comprehensive solutions to heavy metal pollution in water and soil, promoting integrated remediation and sustainable development.
Collapse
Affiliation(s)
- Nengqian Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jiang Zhao
- Shanghai Rural Revitalization Research Center, PR China
| | - Jiawen Du
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Cheng Hou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
3
|
Devendrapandi G, Liu X, Balu R, Ayyamperumal R, Valan Arasu M, Lavanya M, Minnam Reddy VR, Kim WK, Karthika PC. Innovative remediation strategies for persistent organic pollutants in soil and water: A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 249:118404. [PMID: 38341071 DOI: 10.1016/j.envres.2024.118404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Persistent organic pollutants (POPs) provide a serious threat to human health and the environment in soil and water ecosystems. This thorough analysis explores creative remediation techniques meant to address POP pollution. Persistent organic pollutants are harmful substances that may withstand natural degradation processes and remain in the environment for long periods of time. Examples of these pollutants include dioxins, insecticides, and polychlorinated biphenyls (PCBs). Because of their extensive existence, cutting-edge and environmentally friendly eradication strategies must be investigated. The most recent advancements in POP clean-up technology for soil and water are evaluated critically in this article. It encompasses a wide range of techniques, such as nanotechnology, phytoremediation, enhanced oxidation processes, and bioremediation. The effectiveness, cost-effectiveness, and environmental sustainability of each method are assessed. Case studies from different parts of the world show the difficulties and effective uses of these novel techniques. The study also addresses new developments in POP regulation and monitoring, highlighting the need of all-encompassing approaches that include risk assessment and management. In order to combat POP pollution, the integration of diverse remediation strategies, hybrid approaches, and the function of natural attenuation are also examined. Researchers, legislators, and environmental professionals tackling the urgent problem of persistent organic pollutants (POPs) in soil and water should benefit greatly from this study, which offers a complete overview of the many approaches available for remediating POPs in soil and water.
Collapse
Affiliation(s)
- Gautham Devendrapandi
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India.
| | - Xinghui Liu
- Key Laboratory of Western China's Environmental System, College of Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang, 441003, Hubei, China.
| | - Ranjith Balu
- Research and Development Cell, Lovely Professional University, Phagwara, 144411, India.
| | | | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mahimaluru Lavanya
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam.
| | | | - Woo Kyoung Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - P C Karthika
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India.
| |
Collapse
|
4
|
Meng L, Chen Y, Tang L, Sun X, Huo H, He Y, Huang Y, Shao Q, Pan S, Li Z. Effects of temperature-related changes on charred bone in soil: From P release to microbial community. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100221. [PMID: 38292865 PMCID: PMC10825478 DOI: 10.1016/j.crmicr.2024.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Phosphorus (P) is one of the most common limited nutrients in terrestrial ecosystems. Animal bones, with abundant bioapatite, are considerable P sources in terrestrial ecosystems. Heating significantly promotes P release from bone bioapatite, which may alleviate P limitation in soil. This study aimed to explore P release from charred bone (CB) under heating at various temperatures (based on common natural heating). It showed that heating at ∼300 °C significantly increased the P release (up to ∼30 mg/kg) from CB compared with other heating temperatures. Then, the subsequent changes of available P and pH induced evident alternation of soil microbial community composition. For instance, CB heated at ∼300 °C caused elevation of phosphate-solubilizing fungi (PSF) abundance. This further stimulated P mobility in the soil. Meanwhile, the fungal community assembly process was shifted from stochastic to deterministic, whereas the bacterial community was relatively stable. This indicated that the bacterial community showed fewer sensitive responses to the CB addition. This study hence elucidated the significant contribution of heated bone materials on P supply. Moreover, functional fungi might assist CB treated by natural heating (e.g., fire) to construct P "Hot Spots".
Collapse
Affiliation(s)
- Lingzi Meng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- State Key Laboratory of Lake Science and Environment, Nanjing 210008, China
| | - Yunhui Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- State Key Laboratory of Lake Science and Environment, Nanjing 210008, China
| | - Lingyi Tang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaoqin Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu 210014, China
| | - Hongxun Huo
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuxin He
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yinan Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qi Shao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shang Pan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhen Li
- State Key Laboratory of Lake Science and Environment, Nanjing 210008, China
- State Key Laboratory of Biogeology and Environmental Geology, Wuhan 430074, China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|