1
|
He Q, Li X, Xie C, Zhang M, Lai Z, Zhou Y, Luo L, Yang Y, Qu M, Tian K. Long-term nanoplastics exposure contributes to impaired steroidogenesis by disrupting the hypothalamic-testis axis: Evidence from integrated transcriptome and metabolome analysis. J Appl Toxicol 2025; 45:298-310. [PMID: 39340181 DOI: 10.1002/jat.4696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024]
Abstract
Cumulative evidence suggested that nanoplastics (NPs) cause male toxicity, but the mechanisms of which are still misty. Steroidogenesis is a key biological event that responsible for maintaining reproductive health. However, whether dysregulated steroidogenesis is involved in NPs-induced impaired male reproductive function and the underlying mechanism remains unclear. In our study, Balb/c mice were continuously exposed to pristine-NPs or NH2-NPs for 12 weeks, spanning the puberty and adult stage. Upon the long-term NPs treatment, the hypothalamus and testis were subjected to transcriptome and metabolome analysis. And the results demonstrated that both primitive-NPs and NH2-NPs resulted in impaired spermatogenesis and steroidogenesis, as evidenced by a significant reduction in sperm quality, testosterone, FSH, and LH. The expression of genes involved in hypothalamic-pituitary-testis (HPT) axis, such as Kiss-1 and Cyp17a1 that encoded the key steroid hormone synthetase, was also diminished. Furthermore, the phosphatidylcholine and pantothenic acid that mainly enriched in glycerophospholipid metabolism were significantly reduced in the testis. Comprehensive analysis of the transcriptome and metabolome indicated that down-regulated Cyp17a1 was associated with decreased metabolites phosphatidylcholine and pantothenic acid. Overall, we speculate that the disturbed HPT axis induced by long-term NPs contributes to disordered glycerophospholipid metabolism and subsequently impaired steroidogenesis. Our findings deepen the understanding of the action of the mechanism responsible for NPs-induced male reproductive toxicology.
Collapse
Affiliation(s)
- Qian He
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (in cultivation), Zunyi Medical University, Zunyi, Guizhou, China
| | - Xin Li
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Caiyan Xie
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Mingzhe Zhang
- Reproductive Center, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zebin Lai
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yan Zhou
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Lei Luo
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yunxiao Yang
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Mengyuan Qu
- The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Kunming Tian
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
2
|
He J, Zhang F, Fang M, Zhang Y, Zhu C, Xiang S, Yu D, Wu H, Shu Y. Alteration of intestinal microbiota-intestinal barrier interaction interferes with intestinal health after microcystin-LR exposure in Lithobates catesbeianus tadpoles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107249. [PMID: 39826206 DOI: 10.1016/j.aquatox.2025.107249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
There remains uncertainty regarding the influence of microcystin-leucine arginine (MC-LR) on amphibian intestinal health, specifically how MC-LR interferes with intestinal microbiota following exposure to environmental concentrations. In this study, Lithobates catesbeianus tadpoles were exposed to varying MC-LR concentrations (0, 0.5, and 2 µg/L) over a 30-day period. The aim was to investigate how altered interactions between tadpole intestinal microbiota and the intestinal barrier influence intestinal health following MC-LR exposure. Following exposure to the MC-LR at low ambient concentrations, tadpole intestinal tissue was damaged. It had increased permeability, reduced pathogen inhibition capacity, and impaired digestive function. Additionally, there was a significant increase in lipopolysaccharide content and upregulation of downstream response genes, including TLR4, MyD88, and NF-κB, within the intestinal tissue. Therefore, eosinophils' count and pro-inflammatory cytokines' expression increased. In addition, MC-LR exposure induced oxidative stress and mitochondrial structural damage by increasing the levels of reactive oxygen species in intestinal tissue. CytoC and Bax transcription, as well as caspase 9 and caspase 3 activities, increased significantly. Significant downregulation of Bcl-2 transcription promoted apoptosis in tadpole intestinal cells. MC-LR exposure disrupted intestinal microbiota and metabolism in tadpoles. Correlation analysis revealed a strong association between intestinal microbiota and oxidative stress, inflammation, immunity, and tissue damage in the intestine. Conclusively, this study provides the first demonstration that MC-LR significantly affects amphibian intestinal microbiota, highlighting tadpoles' susceptibility to environmental risks posed by MC-LR.
Collapse
Affiliation(s)
- Jun He
- Department of Pathology, Wannan Medical College, Wuhu, Anhui 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Affiliated Middle School, Anhui Normal University, Wuhu 241002, China
| | - Fengqi Zhang
- Department of Pathology, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Minglan Fang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Affiliated Middle School, Anhui Normal University, Wuhu 241002, China
| | - Yuchen Zhang
- Department of Pathology, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Changjing Zhu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Affiliated Middle School, Anhui Normal University, Wuhu 241002, China
| | - Shangfei Xiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Affiliated Middle School, Anhui Normal University, Wuhu 241002, China
| | - Desheng Yu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Affiliated Middle School, Anhui Normal University, Wuhu 241002, China
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Affiliated Middle School, Anhui Normal University, Wuhu 241002, China.
| | - Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Affiliated Middle School, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
3
|
Tornabene BJ, Smalling KL, Hossack BR. Effects of Harmful Algal Blooms on Amphibians and Reptiles are Under-Reported and Under-Represented. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1936-1949. [PMID: 38967263 DOI: 10.1002/etc.5941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
Harmful algal blooms (HABs) are a persistent and increasing problem globally, yet we still have limited knowledge about how they affect wildlife. Although semi-aquatic and aquatic amphibians and reptiles have experienced large declines and occupy environments where HABs are increasingly problematic, their vulnerability to HABs remains unclear. To inform monitoring, management, and future research, we conducted a literature review, synthesized the studies, and report on the mortality events describing effects of cyanotoxins from HABs on freshwater herpetofauna. Our review identified 37 unique studies and 71 endpoints (no-observed-effect and lowest-observed-effect concentrations) involving 11 amphibian and 3 reptile species worldwide. Responses varied widely among studies, species, and exposure concentrations used in experiments. Concentrations causing lethal and sublethal effects in laboratory experiments were generally 1 to 100 µg/L, which contains the mean value of reported HAB events but is 70 times less than the maximum cyanotoxin concentrations reported in the environment. However, one species of amphibian was tolerant to concentrations of 10,000 µg/L, demonstrating potentially immense differences in sensitivities. Most studies focused on microcystin-LR (MC-LR), which can increase systemic inflammation and harm the digestive system, reproductive organs, liver, kidneys, and development. The few studies on other cyanotoxins illustrated that effects resembled those of MC-LR at similar concentrations, but more research is needed to describe effects of other cyanotoxins and mixtures of cyanotoxins that commonly occur in the environment. All experimental studies were on larval and adult amphibians; there were no such studies on reptiles. Experimental work with reptiles and adult amphibians is needed to clarify thresholds of tolerance. Only nine mortality events were reported, mostly for reptiles. Given that amphibians likely decay faster than reptiles, which have tissues that resist decomposition, mass amphibian mortality events from HABs have likely been under-reported. We propose that future efforts should be focused on seven major areas, to enhance our understanding of effects and monitoring of HABs on herpetofauna that fill important roles in freshwater and terrestrial environments. Environ Toxicol Chem 2024;43:1936-1949. Published 2024. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Brian J Tornabene
- Northern Rocky Mountain Science Center, US Geological Survey, Missoula, Montana
| | - Kelly L Smalling
- New Jersey Water Science Center, US Geological Survey, Lawrenceville, New Jersey
| | - Blake R Hossack
- Northern Rocky Mountain Science Center, US Geological Survey, Missoula, Montana
- Wildlife Biology Program, W. A. Franke College of Forestry and Conservation, University of Montana, Missoula, Montana, USA
| |
Collapse
|
4
|
Xie YG, Wang ZY, Xie WQ, Xiang ZY, Cao XD, Hao JJ, Ding GH. Toxicity comparison and risk assessment of two chlorinated organophosphate flame retardants (TCEP and TCPP) on Polypedates megacephalus tadpoles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106979. [PMID: 38823072 DOI: 10.1016/j.aquatox.2024.106979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Tris(2-chloroethyl) phosphate (TCEP) and tris(1‑chloro-2-propyl) phosphate (TCPP) are widely used as chlorinated organophosphate flame retardants (OPFRs) due to their fire-resistance capabilities. However, their extensive use has led to their permeation and pollution in aquatic environments. Using amphibians, which are non-model organisms, to test the toxic effects of OPFRs is relatively uncommon. This study examined the acute and chronic toxicity differences between TCEP and TCPP on Polypedates megacephalus tadpoles and evaluated the potential ecological risks to tadpoles in different aquatic environments using the risk quotient (RQ). In acute toxicity assay, the tadpole survival rates decreased with increased exposure time and concentrations, with TCEP exhibiting higher LC50 values than TCPP, at 305.5 mg/L and 70 mg/L, respectively. In the chronic assay, prolonged exposure to 300 μg/L of both substances resulted in similar adverse effects on tadpole growth, metamorphosis, and hepatic antioxidant function. Based on RQ values, most aquatic environments did not pose an ecological risk to tadpoles. However, the analysis showed that wastewater presented higher risks than rivers and drinking water, and TCPP posed a higher potential risk than TCEP in all examined aquatic environments. These findings provide empirical evidence to comprehend the toxicological effects of OPFRs on aquatic organisms and to assess the safety of aquatic environments.
Collapse
Affiliation(s)
- Yi-Ge Xie
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, Zhejiang 323000, China
| | - Zi-Ying Wang
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, Zhejiang 323000, China
| | - Wen-Qi Xie
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, Zhejiang 323000, China
| | - Zi-Yong Xiang
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, Zhejiang 323000, China
| | - Xin-Dan Cao
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, Zhejiang 323000, China
| | - Jia-Jun Hao
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, Zhejiang 323000, China
| | - Guo-Hua Ding
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, Zhejiang 323000, China.
| |
Collapse
|
5
|
Shu Y, Wang H, Jiang H, Zhou S, Zhang L, Ding Z, Hong P, He J, Wu H. Pleurotus ostreatus polysaccharide-mediated modulation of skin damage caused by microcystin-LR in tadpoles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123440. [PMID: 38290654 DOI: 10.1016/j.envpol.2024.123440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
In this study, we aimed to evaluate the effect of dietary supplementation with edible mushroom (Pleurotus ostreatus)-derived polysaccharides on microcystin leucine-arginine (MC-LR)-induced skin damage in Pelophylax nigromaculatus tadpoles. Tadpoles were exposed to 1 μg/L daily MC-LR, with or without 5.0 g/kg of dietary P. ostreatus polysaccharides, for 30 days. P. ostreatus polysaccharide supplementation significantly increased the dermal collagen fibrils, increased tight junction protein gene expression, decreased the amount of MC-LR accumulation in skin tissues, attenuated oxidative stress, downregulated apoptosis-associated gene transcription, decreased eosinophil numbers, and downregulated transcription of inflammation-related genes (e.g. TLR4, NF-κB, and TNF-α). The composition of the skin commensal microbiota of MC-LR-exposed tadpoles supplemented with P. ostreatus polysaccharides was similar to that of the no-treatment control group. Lipopolysaccharide (LPS) content was positively correlated with the abundance of Gram-negative bacteria, including Chryseobacterium and Thauera. Therefore, P. ostreatus polysaccharides may alleviate MC-LR-induced skin barrier damage in tadpoles in two ways: 1) attenuation of oxidative stress-mediated apoptosis mediated by increased glutathione (GSH) content and total superoxide dismutase activity; and 2) alteration of the skin commensal microbiota composition to attenuate the LPS/Toll-like receptor 4 inflammatory pathway response. Furthermore, P. ostreatus polysaccharides may increase skin GSH synthesis by promoting glycine production via the gut microbiota and may restore the MC-LR-damaged skin resistance to pathogenic bacteria by increasing antimicrobial peptide transcripts and lysozyme activity. This study highlights for the first time the potential application of P. ostreatus polysaccharides, an ecologically active substance, in mitigating the skin damage induced by MC-LR exposure, and may provide new insights for its further development in aquaculture.
Collapse
Affiliation(s)
- Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Hui Wang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Huiling Jiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Shiwen Zhou
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Liyuan Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Zifang Ding
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Pei Hong
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Jun He
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China; Department of Pathology, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|