1
|
Negro C, Guerra WD, Armentano D, Ferrando-Soria J, Grancha T, Pardo E. Bioinspired metal-organic frameworks for aqueous environment decontamination: from laboratory scale to real-world technologies. Chem Commun (Camb) 2024; 60:14935-14951. [PMID: 39588682 DOI: 10.1039/d4cc05439c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Concerns regarding water contamination are escalating due to the increasing presence of all types of pollutants in water sources, which pose serious health risks to humans and wildlife, disrupt ecosystems, and compromise the safety of drinking water. Addressing water contamination requires stringent regulations and increased public awareness, but especially, it requires the development of highly effective new technologies to decontaminate those aquatic environments that have been already polluted over the past few decades. Since the emergence of metal-organic frameworks (MOFs), their use has been proposed in a multitude of fields, given their unique physicochemical properties, and one of the fields where a realistic application can be expected in the near future is water remediation. In particular, oxamidato-based biological MOFs (bioMOFs) have demonstrated, in recent years, unique properties such as extraordinary robustness, crystallinity and water- and pH-stability as well as very easy functionalisation, which situates them among the best adsorbents for this environmental purpose. In this review, we have summarised the most remarkable results of oxamidato-based bioMOFs in the field of water remediation. Moreover, on the basis of the reported results, we dare to suggest the real possibilities of application, in relevant real-world environments, for these and other MOFs, as well as the main obstacles that will need to be overcome, aiming to widening the range of applicability of MOFs and making solid headway towards sustainable development.
Collapse
Affiliation(s)
- Cristina Negro
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980 Paterna, Valencia, Spain.
| | - Walter D Guerra
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980 Paterna, Valencia, Spain.
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Rende, Cosenza, Italy
| | - Jesús Ferrando-Soria
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980 Paterna, Valencia, Spain.
| | - Thais Grancha
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980 Paterna, Valencia, Spain.
| | - Emilio Pardo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
2
|
Popović M, Morović S, Kovačić M, Košutić K. Pharmaceutical Removal with Photocatalytically Active Nanocomposite Membranes. MEMBRANES 2024; 14:239. [PMID: 39590625 PMCID: PMC11596311 DOI: 10.3390/membranes14110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
The advancement of pharmaceutical science has resulted in the development of numerous tailor-made compounds, i.e., pharmaceuticals, tuned for specific drug targets. These compounds are often characterized by their low biodegradability and are commonly excreted to a certain extent unchanged from the human body. Due to their low biodegradability, these compounds represent a significant challenge to wastewater treatment plants. Often, these compounds end up in effluents in the environment. With the advancement of membrane technologies and advanced oxidation processes, photocatalysis in particular, a synergistic approach between the two was recognized and embraced. These hybrid advanced water treatment processes are the focus of this review, specifically the removal of pharmaceuticals from water using a combination of a photocatalyst and pressure membrane process, such as reverse osmosis or nanofiltration employing photocatalytic nanocomposite membranes.
Collapse
Affiliation(s)
- Marin Popović
- Department of Safety and Protection, Karlovac University of Applied Sciences, Trg Josipa Juraja Strossmayera 9, HR-47000 Karlovac, Croatia
| | - Silvia Morović
- Department of Physical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, HR-10000 Zagreb, Croatia;
| | - Marin Kovačić
- Department of Polymer Engineering and Organic Chemical Technology, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, HR-10000 Zagreb, Croatia;
| | - Krešimir Košutić
- Department of Physical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, HR-10000 Zagreb, Croatia;
| |
Collapse
|
3
|
Liu L, Zou X, Cheng Y, Li H, Zhang X, Yuan Q. Contrasting Dynamics of Intracellular and Extracellular Antibiotic Resistance Genes in Response to Nutrient Variations in Aquatic Environments. Antibiotics (Basel) 2024; 13:817. [PMID: 39334992 PMCID: PMC11428281 DOI: 10.3390/antibiotics13090817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The propagation of antibiotic resistance in environments, particularly aquatic environments that serve as primary pathways for antibiotic resistance genes (ARGs), poses significant health risks. The impact of nutrients, as key determinants of bacterial growth and metabolism, on the propagation of ARGs, particularly extracellular ARGs (eARGs), remains poorly understood. In this study, we collected microorganisms from the Yangtze River and established a series of microcosms to investigate how variations in nutrient levels and delivery frequency affect the relative abundance of intracellular ARGs (iARGs) and eARGs in bacterial communities. Our results show that the relative abundance of 7 out of 11 representative eARGs in water exceeds that of iARGs, while 8 iARGs dominate in biofilms. Notably, iARGs and eARGs consistently exhibited opposite responses to nutrient variation. When nutrient levels increased, iARGs in the water also increased, with the polluted group (COD = 333.3 mg/L, COD:N:P = 100:3:0.6, m/m) and the eutrophic group (COD = 100 mg/L, COD:N:P = 100:25:5, m/m) showing 1.2 and 3.2 times higher levels than the normal group (COD = 100 mg/L, COD:N:P = 100:10:2, m/m), respectively. In contrast, eARGs decreased by 6.7% and 8.4% in these groups. On the other hand, in biofilms, higher nutrient levels led to an increase in eARGs by 1.5 and 1.7 times, while iARGs decreased by 17.5% and 50.1% in the polluted and eutrophic groups compared to the normal group. Moreover, while increasing the frequency of nutrient delivery (from 1 time/10 d to 20 times/10 d) generally did not favor iARGs in either water or biofilm, it selectively enhanced eARGs in both. To further understand these dynamics, we developed an ARGs-nutrient model by integrating the Lotka-Volterra and Monod equations. The results highlight the complex interplay of bacterial growth, nutrient availability, and mechanisms such as horizontal gene transfer and secretion influencing ARGs' propagation, driving the opposite trend between these two forms of ARGs. This contrasting response between iARGs and eARGs contributes to a dynamic balance that stabilizes bacterial resistance levels amid nutrient fluctuations. This study offers helpful implications regarding the persistence of bacterial resistance in the environment.
Collapse
Affiliation(s)
- Lele Liu
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (L.L.); (X.Z.); (Y.C.); (H.L.)
| | - Xinyi Zou
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (L.L.); (X.Z.); (Y.C.); (H.L.)
| | - Yuan Cheng
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (L.L.); (X.Z.); (Y.C.); (H.L.)
| | - Huihui Li
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (L.L.); (X.Z.); (Y.C.); (H.L.)
| | - Xueying Zhang
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (L.L.); (X.Z.); (Y.C.); (H.L.)
| | - Qingbin Yuan
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (L.L.); (X.Z.); (Y.C.); (H.L.)
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Yan F, Xu X, An L, Du W, Shen W, Yang KL, Ye J, Dai R. Highly efficient treatment of tetracycline using coupled electro-Fenton and electrocoagulation process: Mechanism and toxicity assessment. CHEMOSPHERE 2024; 362:142664. [PMID: 38901704 DOI: 10.1016/j.chemosphere.2024.142664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
In this study, a novel carbon fiber brush (CFB) electrode was designed using carbon fiber filaments and conductive metals. It was used as the cathode to construct an efficient coupled electro-Fenton and electrocoagulation (EF-EC) process for tetracycline (TC) treatment. An optimal 97.9% removal rate of 10 mg L-1 TC was achieved within 20 min. The coupled process is less pH-dependent and more effective in treating TC compared to the traditional individual electro-Fenton (EF) or electrocoagulation (EC) process, achieving efficient TC removal under neutral pH conditions. The removal rate of 10 mg L-1 TC consistently remained above 92% at 20 min after ten cycle experiments using the same electrodes in a Fe-CFB system (92.7-97.9%), indicating excellent reusability and stability of the CFB cathode. Mechanism analysis showed both EF and EC processes were involved in the system. Radicals (such as •OH and SO4-•) generated by EF contributed to the degradation of TC, yielding nine intermediates. Coagulants (such as Fe(OH)3) generated by EC contributed to the removal of TC. Toxicity prediction results indicated that over half of the nine intermediates exhibited lower biotoxicity compared to TC. This study provides a feasible alternative cathode for the efficient treatment of TC using EF-EC process.
Collapse
Affiliation(s)
- Feng Yan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Energy Construction Engineering Design & Research Co., Shanghai, 200135, China
| | - Xin Xu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Lili An
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Wenjun Du
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Wendi Shen
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Kun-Lin Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576, Singapore
| | - Jianfeng Ye
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ruihua Dai
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
5
|
He Y, Liu Z, Chen J, Deng Y. Performance and mechanism of sulfadiazine and norfloxacin adsorption from aqueous solution by magnetic coconut shell biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48561-48575. [PMID: 39031314 DOI: 10.1007/s11356-024-34359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
In this study, magnetic coconut shell biochar loaded with spherical Fe3O4 and γ-Fe2O3 particles was successfully synthesized using a chemical coprecipitation method. The magnetic biochar exhibited a good magnetic separability and environmental security. The maximum sulfadiazine (SDZ) and norfloxacin (NOR) removal efficiencies were 94.8% and 92.3% at pH 4 and 25 °C with adsorbent dosage of 2.5 g/L, respectively. When antibiotic concentrations ranged from 5 to 50 mg/L, the theoretical maximum adsorption capacities of SDZ and NOR were 16.7 mg/g and 25.8 mg/g, respectively. The Langmuir isotherm and pseudo-second-order kinetic models could better describe the adsorption process of both antibiotics, implying the monolayer chemical adsorption. The thermodynamic analysis indicated that the adsorption process was spontaneous and endothermic. The ionic strength had no significant effect on the adsorption behavior of either antibiotic. Combined with BET, FTIR, and XPS results, the dominant mechanisms for SDZ and NOR adsorption were pore filling, π-π electron-donor-acceptor interaction, hydrogen bonds and surface complexation. Moreover, Lewis acid-base interaction also contributed to SDZ adsorption.
Collapse
Affiliation(s)
- Yan He
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China.
| | - Ziruo Liu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Jiale Chen
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Yuehua Deng
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| |
Collapse
|
6
|
Bansal S, Liu D, Mao Q, Bauer N, Wang B. Carbon Monoxide as a Potential Therapeutic Agent: A Molecular Analysis of Its Safety Profiles. J Med Chem 2024; 67:9789-9815. [PMID: 38864348 PMCID: PMC11215727 DOI: 10.1021/acs.jmedchem.4c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
Carbon monoxide (CO) is endogenously produced in mammals, with blood concentrations in the high micromolar range in the hemoglobin-bound form. Further, CO has shown therapeutic effects in various animal models. Despite its reputation as a poisonous gas at high concentrations, we show that CO should have a wide enough safety margin for therapeutic applications. The analysis considers a large number of factors including levels of endogenous CO, its safety margin in comparison to commonly encountered biomolecules or drugs, anticipated enhanced safety profiles when delivered via a noninhalation mode, and the large amount of safety data from human clinical trials. It should be emphasized that having a wide enough safety margin for therapeutic use does not mean that it is benign or safe to the general public, even at low doses. We defer the latter to public health experts. Importantly, this Perspective is written for drug discovery professionals and not the general public.
Collapse
Affiliation(s)
| | | | | | - Nicola Bauer
- Department of Chemistry and
the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry and
the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
7
|
John KI, Ho G, Li D. Recent progresses in synthesis and modification of g-C 3N 4 for improving visible-light-driven photocatalytic degradation of antibiotics. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:3047-3078. [PMID: 38877630 DOI: 10.2166/wst.2024.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/11/2024] [Indexed: 06/16/2024]
Abstract
Graphitic carbon nitride (g-C3N4) is a widely studied visible-light-active photocatalyst for low cost, non-toxicity, and facile synthesis. Nonetheless, its photocatalytic efficiency is below par, due to fast recombination of charge carriers, low surface area, and insufficient visible light absorption. Thus, the research on the modification of g-C3N4 targeting at enhanced photocatalytic performance has attracted extensive interest. A considerable amount of review articles have been published on the modification of g-C3N4 for applications. However, limited effort has been specially contributed to providing an overview and comparison on available modification strategies for improved photocatalytic activity of g-C3N4-based catalysts in antibiotics removal. There has been no attempt on the comparison of photocatalytic performances in antibiotics removal between modified g-C3N4 and other known catalysts. To address these, our study reviewed strategies that have been reported to modify g-C3N4, including metal/non-metal doping, defect tuning, structural engineering, heterostructure formation, etc. as well as compared their performances for antibiotics removal. The heterostructure formation was the most widely studied and promising route to modify g-C3N4 with superior activity. As compared to other known photocatalysts, the heterojunction g-C3N4 showed competitive performances in degradation of selected antibiotics. Related mechanisms were discussed, and finally, we revealed current challenges in practical application.
Collapse
Affiliation(s)
- Kingsley Igenepo John
- College of Science, Technology, Engineering & Mathematics, Murdoch University, Murdoch, WA 6150, Australia
| | - Goen Ho
- College of Science, Technology, Engineering & Mathematics, Murdoch University, Murdoch, WA 6150, Australia
| | - Dan Li
- College of Science, Technology, Engineering & Mathematics, Murdoch University, Murdoch, WA 6150, Australia E-mail:
| |
Collapse
|
8
|
Xie M, Liu C, Liang M, Rad S, Xu Z, You S, Wang D. A review of the degradation of antibiotic contaminants using advanced oxidation processes: modification and application of layered double hydroxides based materials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18362-18378. [PMID: 38353817 DOI: 10.1007/s11356-024-32059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/15/2024] [Indexed: 03/09/2024]
Abstract
In recent years, the treatment of organic pollutants has become a global concern due to the threat to human health posed by emerging contaminants, especially antibiotic contamination. Advanced oxidation processes (AOPs) can solve the organic pollution problem well, which have been identified as a promising solution for the treatment of hard-to-handle organic compounds including antibiotic contaminants. Layered double hydroxides (LDHs) are excellent catalysts because of their flexible tunability, favorable thermal stability, abundant active sites, and facile exchangeability of intercalated anions. This paper conducted a systematic review of LDHs-based materials used for common antibiotic removal by three significant AOP technologies, such as photocatalysis, the Fenton-like processes, and peroxymonosulfate catalysis. The degradation effects studied in various studies were reviewed, and the mechanisms were discussed in detail based on the type of AOPs. Finally, the challenges and the application trends of AOPs that may arise were prospected. The aim of this study is to suggest ways to provide practical guidance for the screening and improvement of LDH materials and the rational selection of AOPs to achieve efficient antibiotic degradation. This could lead to the development of more efficient and environmentally friendly materials and processes for degrading antibiotics, with significant implications for our ecological conservation by addressing water pollution.
Collapse
Affiliation(s)
- Mingqi Xie
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
| | - Chongmin Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China.
| | - Meina Liang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
| | - Saeed Rad
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
| | - Zejing Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
| | - Shaohong You
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
| | - Dunqiu Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
9
|
Peng Y, Lin J, Niu JL, Guo X, Chen Y, Hu T, Cheng J, Hu Y. Synergistic Effect of Ion Doping and Type-II Heterojunction Construction and Ciprofloxacin Degradation by MIL-68(In,Bi)-NH 2@BiOBr under Visible Light. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2351-2364. [PMID: 38175742 DOI: 10.1021/acsami.3c16037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Heterojunction structure and ion doping techniques are viable tactics in facilitating the generation and separation of photogenerated electrons and holes in photocatalysis. In the current study, a novel Bi ion-doped MIL-68(In,Bi)-NH2@BiOBr (MIBN@BOB) type-II heterojunction was first synthesized in a one-step solvothermal reaction. Doping of Bi ions not only broadened the light-sensing range but also provided reliable anchor sites for the in situ growth of BiOBr. Meanwhile, the heterostructure supplied new channels for photogenerated carriers, accelerating the transfer and inhibiting the recombination of photogenerated electron-hole. The obtained MIBN@BOB exhibited enhanced photocatalytic performance (91.1%) than MIL-68(In)-NH2 (40.8%) and BiOBr (57.5%) in ciprofloxacin (CIP) degradation under visible light, with excellent reusability. Photocatalysts were characterized in detail, and a series of photoelectrochemical tests were utilized to analyze the photoelectric properties. MIBN@BOB were deduced to conform the electron conduction mechanism of conventional type-II heterojunctions. More importantly, based on the above experiments and density functional theory (DFT) calculation, BiOBr-Bi in MIBN@BOB can serve as the major active sites of CIP enrichment, and •O2- and 1O2 generated at the BiOBr interface can react with the adsorbed CIP directly. Lastly, the possible degradation products and pathways of CIP were analyzed by liquid chromatography-tandem mass spectrometry (LC/MS/MS). This study provides a reference for the construction of ion-doping-modified metal-organic framework (MOF)-based heterojunction photocatalysts and their application in antibiotic removal.
Collapse
Affiliation(s)
- Yongjun Peng
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jialiang Lin
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ji-Liang Niu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaolan Guo
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yazhen Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tongke Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jianhua Cheng
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- South China Institute of Collaborative Innovation, Dongguan 523808, China
| | - Yongyou Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|