1
|
Wang Y, Wang D. Transgenerational intestinal toxicity of 6-PPD quinone in causing ROS production, enhancement in intestinal permeability and suppression in innate immunity in C. elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125208. [PMID: 39481523 DOI: 10.1016/j.envpol.2024.125208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/13/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
Toxicity of 6-PPD quinone (6-PPDQ) on organisms at various aspects has been frequently observed at parental generation (P0-G). In contrast, we know little about its possible transgenerational toxicity and underlying mechanisms. In Caenorhabditis elegans, exposure to 6-PPDQ (0.1-10 μg/L) at P0-G induced transgenerational reactive oxygen species (ROS) production in intestine. Accompanied with this, transgenerational increase in intestinal permeability and decrease in expressions of genes governing intestinal function were observed. Exposure to 6-PPDQ (1 and 10 μg/L) at P0-G caused transgenerational suppression in expressions of antimicrobial genes (lys-7 and spp-1) and LYS-7::RFP. Meanwhile, intestinal ROS production could be enhanced by RNAi of acs-22, hmp-2, pkc-3, lys-7, and spp-1. Moreover, acs-22, hmp-2, and pkc-3 RNAi could inhibit innate immune response induced by 6-PPDQ. Additionally, lys-7 and spp-1 RNAi could strengthen intestinal permeability in 6-PPDQ exposed nematodes. Therefore, 6-PPDQ caused transgenerational intestinal toxicity, which was associated with both enhanced intestinal permeability and suppressed innate immunity.
Collapse
Affiliation(s)
- Yuxing Wang
- Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Dayong Wang
- Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China.
| |
Collapse
|
2
|
Yin L, Yin Y, Xu L, Zhang Y, Shi K, Wang J, An J, He H, Yang S, Ni L, Li S. Uncovering toxin production and molecular-level responses in Microcystis aeruginosa exposed to the flame retardant Tetrabromobisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136886. [PMID: 39689566 DOI: 10.1016/j.jhazmat.2024.136886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
Tetrabromobisphenol A (TBBPA) poses significant ecological risks owing to its toxicity; however, its specific effects on toxin-producing cyanobacteria in aquatic environments remain poorly understood. This study systematically investigated the effects of TBBPA at concentrations ranging from 100 ng/L to 100 mg/L on Microcystis aeruginosa (M. aeruginosa) by examining growth, photosynthesis, toxin production, antioxidant responses, and molecular-level changes. The results indicated that low levels of TBBPA (0.1-1000 μg/L) induced stimulatory effects on the growth and microcystin-leucine-arginine (MC-LR) production of M. aeruginosa. Metabolomic analysis revealed that low levels of TBBPA significantly upregulated metabolites associated with energy metabolism, xenobiotic biodegradation, oxidative stress responses, and protein biosynthesis in M. aeruginosa, potentially contributing to the observed hormetic effect. Conversely, higher doses (40-100 mg/L) inhibited growth and significantly increased MC-LR release by compromising cellular structural integrity. Proteomic analysis revealed that toxic levels of TBBPA significantly affected the expression of proteins associated with energy harvesting and utilization. Specifically, TBBPA disrupted electron flow in oxidative phosphorylation and the photosynthetic system (PS) by targeting PSI, PSII, and Complex I, impairing energy acquisition and causing oxidative damage, ultimately leading to algal cell death. Additionally, proteins involved in the biosynthesis and metabolism of cysteine, methionine, phenylalanine, tyrosine, and tryptophan were upregulated, potentially enhancing M. aeruginosa resistance to TBBPA-induced stress. This study offers insights into the effects of TBBPA on M. aeruginosa and its potential risks to aquatic ecosystems.
Collapse
Affiliation(s)
- Li Yin
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yu Yin
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Lin Xu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kaipian Shi
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Juan Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Junfeng An
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Lixiao Ni
- School of Environment, Hohai University, Nanjing 210098, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China.
| |
Collapse
|
3
|
Liao Y, Wang Y, Lin Y, Xiao Y, Mohan M, Jaman R, Dong H, Zhu J, Li X, Zhang C, Chen G, Zhou J. Molecular mechanisms of tetrabromobisphenol A (TBBPA) toxicity: Insights from various biological systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117418. [PMID: 39612681 DOI: 10.1016/j.ecoenv.2024.117418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/03/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Tetrabromobisphenol A (TBBPA) is a ubiquitous brominated flame retardant extensively incorporated into a wide range of products. As its utilization has escalated, its environmental exposure risks have concomitantly increased. The molecular properties of TBBPA allow it to persist in the environment and within organisms. In this review, we comprehensively examine the toxicity of TBBPA across different organ systems and elucidate the underlying molecular mechanisms. We particularly emphasize TBBPA's impact on biological signaling pathways, protein functionality, cellular architecture, and epigenetic regulation, which collectively lead to disruptions in endocrine, hepatic, neurological, reproductive, and other biological systems. The analysis of these toxicological phenomena and their fundamental molecular mechanisms has substantially enhanced our understanding of TBBPA's hazardous characteristics. This review also examines potential avenues for future research, with a focus on uncovering novel molecular mechanisms and assessing the toxicological impacts of TBBPA exposure, particularly in relation to interactions with other environmental contaminants. We propose a greater focus on examining the toxic effects and molecular mechanisms of long-term TBBPA exposure at environmentally relevant concentrations to facilitate more accurate assessments of human health risks.
Collapse
Affiliation(s)
- Yuxing Liao
- School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, China
| | - Yilin Wang
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - YaJie Lin
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Yuxi Xiao
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Mohith Mohan
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Rummana Jaman
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Hao Dong
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Jiao Zhu
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Xuerui Li
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Conglin Zhang
- Department rehabilitation medicine, the First Affiliated Hospital of Dali University, Dali, Yunnan 671000, China
| | - Guiyuan Chen
- School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, China
| | - Jiaqi Zhou
- School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, China.
| |
Collapse
|
4
|
Song M, Ruan Q, Wang D. Comparison of Transgenerational Neurotoxicity between Pristine and Amino-Modified Nanoplastics in C. elegans. TOXICS 2024; 12:555. [PMID: 39195657 PMCID: PMC11358997 DOI: 10.3390/toxics12080555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
Increasing evidence has suggested that nanoplastic pollution has become a global concern. More importantly, transgenerational toxicity can be induced by nanoplastics at predicted environmentally relevant doses (ERDs). Considering that amino modification could increase nanoplastic toxicity, we compared transgenerational neurotoxicity between pristine polystyrene nanoparticle (PS-NP) and amino-modified PS-NP (NH2-PS-NP) in Caenorhabditis elegans. At 0.1-10 μg/L, NH2-PS-NP caused more severe transgenerational toxicity on locomotion and neuronal development. Accompanied with a difference in transgenerational neuronal damage, compared to PS-NP (10 μg/L), NH2-PS-NP (10 μg/L) induced more severe transgenerational activation of mec-4, crt-1, itr-1, and tra-3, which are required for the induction of neurodegeneration. Moreover, NH2-PS-NP (10 μg/L) caused more severe transgenerational inhibition in expressions of mpk-1, jnk-1, dbl-1, and daf-7 than PS-NP (10 μg/L), and RNA interference (RNAi) of these genes conferred susceptibility to the toxicity of PS-NP and NH2-PS-NP on locomotion and neuronal development. NH2-PS-NP (10 μg/L) further caused more severe transgenerational activation of germline ligand genes (ins-3, ins-39, daf-28, lin-44, egl-17, efn-3, and lag-2) than PS-NP (10 μg/L), and RNAi of these ligand genes caused resistance to the toxicity of PS-NP and NH2-PS-NP on locomotion and neuronal development. Our results highlighted more severe exposure risk of amino-modified nanoplastics at ERDs in causing transgenerational neurotoxicity in organisms.
Collapse
Affiliation(s)
- Mingxuan Song
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qinli Ruan
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing 210009, China
- Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China
| |
Collapse
|
5
|
Han Y, Liu Z, Lu L, Wang B, Li W, Yuan X, Ding J, Zhang H, Liu J. Tetrabromobisphenol A reduces male rats reproductive organ coefficients and disrupting sexual hormone by causing oxidative stress. Toxicology 2024; 505:153837. [PMID: 38763426 DOI: 10.1016/j.tox.2024.153837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Tetrabromobisphenol A (TBBPA) has become a topic of public attention due to its pervasive detection in the environment and organisms in recent decades. However, limited information is available regarding the toxicity of TBBPA on reproductive ability of male mammals. Herein, the reproductive toxicity of TBBPA was investigated in male rats to fill the knowledge gap. In this study, male rats were exposed to TBBPA (0, 10, 100, and 1000 mg/kg) for 6 weeks. Subsequently, body and organ indexes, histopathological evaluation of testis and epididymis, ultrastructural observation of sperm, testosterone and progesterone levels, and oxidative stress indicators were conducted to reveal corresponding mechanisms. Results obtained showed that compare to the control group, the body weight, testes weight, epididymis weight, seminal vesicle and coagulation glands weight of rats in the 1000 mg/kg group lost 8.30%, 16.84%, 20.16%, 19.72% and 26.42%, respectively. Intriguingly, exposure to TBBPA (10, 100, 100 mg/kg) resulted in substantial pathological damage in testis, epididymis and sperm. TBBPA exposure also increased malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents, as well as superoxide dismutase (T-SOD) and catalase (CAT) activities in testicular tissue. What's more, the testosterone and progesterone levels in male rat serum were significantly decreased after exposure to TBBPA for 6 weeks. Meanwhile, results of molecular docking showed that TBBPA has a strong affinity with estrogen receptors (ERs). These findings demonstrated that TBBPA exposure negatively impacts the reproductive ability of male rats, thus providing new insights for risk assessment for reproductive health under TBBPA exposure.
Collapse
Affiliation(s)
- Yu Han
- School of Life Sciences, Central South University, Changsha 410083, China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhiquan Liu
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Liping Lu
- School of Public Health Hangzhou Normal University, Hangzhou 311121, China
| | - Binhao Wang
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenbing Li
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xia Yuan
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiafeng Ding
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Hangjun Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jing Liu
- School of Life Sciences, Central South University, Changsha 410083, China; Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China.
| |
Collapse
|
6
|
Wang X, Kang C, Guo W, Yuan L, Zhang H, Zhang Q, Xiao Q, Hao W. Chlormequat chloride induced activation of calmodulin mediated PI3K/AKT signaling pathway led to impaired sperm quality in pubertal mice. Food Chem Toxicol 2024; 185:114475. [PMID: 38286265 DOI: 10.1016/j.fct.2024.114475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/20/2024] [Indexed: 01/31/2024]
Abstract
Chlormequat chloride (CCC), as a widely used plant growth regulator, can cause impaired sperm quality and decreased testosterone synthesis in pubertal rats, but the underlying mechanism remains unclear. The purpose of this study was to elucidate the toxicokinetics and tissue distribution of CCC, as well as the possible mechanism of CCC-induced impairment in sperm quality. The concentration of CCC reached its peak 1 h after a single dose (200 mg/kg·bw) administration in mice plasma, and a bimodal phenomenon appeared in the testes, liver, and epididymis. In vivo, 200 mg/kg CCC caused testicular damage and impaired sperm quality in pubertal mice, and the expression of p-tyrosine and GSK3α decreased in cauda epididymidis, sperm and testes. CCC also caused the down-regulation of AKAP4 and the up-regulation of calmodulin (CaM), and activated the PI3K/AKT signaling pathway in the testes. In vitro, CCC reduced the levels of p-tyrosine, AKAP4 and GSK3α, increased the level of CaM and activated the PI3K/AKT signaling pathway in GC-1 cells. CaM antagonist (W-7 hydrochloride) and PI3K inhibitor (LY294002) can effectively improve the expression of GSK3α and AKAP4 by suppressing the PI3K/AKT signaling pathway in GC-1 cells treated with CCC. It was indicated that CCC induced impairment in sperm quality might be partially related to the activation of PI3K/AKT signaling pathway mediated by CaM.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Chenping Kang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Wanqian Guo
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Lilan Yuan
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Haoran Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Qiong Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| |
Collapse
|
7
|
Chen H, Chen X, Ding P, Gu Y, Jiang Y, Li X, Hu G, Li L, Wang C, Yu J, Li H. Photoaging enhances combined toxicity of microplastics and tetrabromobisphenol A by inducing intestinal damage and oxidative stress in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169259. [PMID: 38128659 DOI: 10.1016/j.scitotenv.2023.169259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Microplastics (MPs) are emerging environmental contaminants that often co-exist with tetrabromobisphenol A (TBBPA) in the environment. However, the joint effect of TBBPA and photoaged MPs at ambient concentrations remains unknown largely. In this study, the combined toxicity of ultraviolet-aged polystyrene (UV-PS) and TBBPA was investigated in Caenorhabditis elegans. UV irradiation could change the physical and chemical characteristics of polystyrene (PS), and UV-PS (90.218 μg/g) showed a stronger adsorption capacity than PS of 79.424 μg/g. Toxicity testing showed that 1 μg/L UV-PS enhanced the toxic effect of 1 μg/L TBBPA by reducing body length, locomotion behavior, and brood size in nematodes. Using ROS production, lipofuscin accumulation, and expression of gst-4::GFP as endpoints, the combined exposure of UV-PS and TBBPA induced stronger oxidative stress than TBBPA alone. Joint exposure to UV-PS and TBBPA significantly increased of Nile red and blue food dye in its intestinal tract compared to that in the TBBPA exposure group, indicating that co-exposure enhanced intestinal permeability. After co-exposure to UV-PS and TBBPA, the expression of the associated genes detected increased significantly. Therefore, UV-PS enhances the adverse effects of TBBPA through intestinal damage and oxidative stress in nematodes. These findings suggest that the co-presence of photoaged PS and TBBPA results in high environmental risks.
Collapse
Affiliation(s)
- Haibo Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoxia Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yulun Gu
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yongqi Jiang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xintong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Liangzhong Li
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jun Yu
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|