1
|
Mishra M, Pati S, Paul S, Gonçalves RM, Acharyya T, Tripathy B, Silva RMD, Guria R, Santos CAG. Dynamic shoreline alterations and their impacts on Olive Ridley Turtle (Lepidochelys olivacea) nesting sites in Gahirmatha Marine Wildlife Sanctuary, Odisha (India). MARINE POLLUTION BULLETIN 2024; 202:116321. [PMID: 38574501 DOI: 10.1016/j.marpolbul.2024.116321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Currently, sea turtle habitats are being altered by climate change and human activities, with habitat loss posing an urgent threat to Indian sea turtles. Thus, the objective of this study is to analyze the dynamic shoreline alterations and their impacts on Olive Ridley Sea Turtle (ORT) nesting sites in Gahirmatha Marine Wildlife Sanctuary from 1990 to 2022. Landsat satellite images served as input datasets to assess dynamic shoreline changes. This study assessed shoreline alterations and their rates across 929 transects divided into four zones using the Digital Shoreline Analysis System (DSAS) software. The results revealed a significant 14-km northward shift in the nesting site due to substantial coastal erosion, threatening the turtles' Arribada. This study underscores the need for conservation efforts to preserve nesting environments amidst changing coastal landscapes, offering novel insights into the interaction between coastal processes and marine turtle nesting behaviors.
Collapse
Affiliation(s)
- Manoranjan Mishra
- Department of Geography, Fakir Mohan University, Vyasa Vihar, Nuapadhi, Balasore 756089, Odisha, India
| | - Saswati Pati
- Department of Geography, Fakir Mohan University, Vyasa Vihar, Nuapadhi, Balasore 756089, Odisha, India
| | - Suman Paul
- Department of Geography, Fakir Mohan University, Vyasa Vihar, Nuapadhi, Balasore 756089, Odisha, India
| | - Rodrigo Mikosz Gonçalves
- Department of Cartographic Engineering, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| | - Tamoghna Acharyya
- Department of Marine Sciences, Berhampur University, Bhanjabihar, Odisha, India
| | - Basudev Tripathy
- Zoological Survey of India, Western Regional Centre, Akurdi, 411044 Pune, India.
| | | | - Rajkumar Guria
- Department of Geography, Fakir Mohan University, Vyasa Vihar, Nuapadhi, Balasore 756089, Odisha, India
| | - Celso Augusto Guimarães Santos
- Department of Civil and Environmental Engineering, Federal University of Paraíba, João Pessoa 58051-900, Paraíba, Brazil.
| |
Collapse
|
2
|
Mishra M, Guria R, Paul S, Baraj B, Santos CAG, Dos Santos CAC, Silva RMD. Geo-ecological, shoreline dynamic, and flooding impacts of Cyclonic Storm Mocha: A geospatial analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170230. [PMID: 38278234 DOI: 10.1016/j.scitotenv.2024.170230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/28/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
This research comprehensively assesses the aftermath of Cyclonic Storm Mocha, focusing on the coastal zones of Rakhine State and the Chittagong Division, spanning Myanmar and Bangladesh. The investigation emphasizes the impacts on coastal ecology, shoreline dynamics, flooding patterns, and meteorological variations. Employed were multiple vegetation indices-Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Modified Vegetation Condition Index (mVCI), Disaster Vegetation Damage Index (DVDI), and Fractional Vegetation Cover (FVC)-to evaluate ecological consequences. The Digital Shoreline Assessment System (DSAS) aided in determining shoreline alterations pre- and post-cyclone. Soil exposure and flood extents were scrutinized using the Bare Soil Index (BSI) and Modified Normalized Difference Water Index (MNDWI), respectively. Additionally, the study encompassed an analysis of microclimatic variables, comparing meteorological data across pre- and post-cyclone periods. Findings indicate significant ecological impacts: an estimated 8985.46 km2 of dense vegetation (NDVI >0.6) was adversely affected. Post-cyclone, there was a discernible reduction in EVI values. The mean mVCI shifted negatively from -0.18 to -0.33, and the mean FVC decreased from 0.39 to 0.33. The DVDI underscored considerable vegetation damage in various areas, underscoring the cyclone's extensive impact. Meteorological analysis revealed a 245 % increase in rainfall (20.22 mm on May 14, 2023 compared to the May average of 5.86 mm), and significant increases in relative humidity (14 %) and wind speed (205 %). Erosion was observed along 74.60 % of the studied shoreline. These insights are pivotal for developing comprehensive strategies aimed at the rehabilitation and conservation of critical coastal ecosystems. They provide vital data for emergency response initiatives and offer resources for entities engaged in enhancing coastal resilience and protecting local community livelihoods.
Collapse
Affiliation(s)
- Manoranjan Mishra
- Department of Geography, Fakir Mohan University, Vyasa Vihar, Nuapadhi, Balasore 756089, Odisha, India.
| | - Rajkumar Guria
- Department of Geography, Fakir Mohan University, Vyasa Vihar, Nuapadhi, Balasore 756089, Odisha, India
| | - Suman Paul
- Department of Geography, Fakir Mohan University, Vyasa Vihar, Nuapadhi, Balasore 756089, Odisha, India
| | - Biswaranjan Baraj
- Department of Geography, Fakir Mohan University, Vyasa Vihar, Nuapadhi, Balasore 756089, Odisha, India
| | - Celso Augusto Guimarães Santos
- Department of Civil and Environmental Engineering, Federal University of Paraíba, João Pessoa 58051-900, Paraíba, Brazil.
| | | | | |
Collapse
|