1
|
Fu Z, Jin H, Mao W, Guo R, Miao Q. Thiuram vulcanization accelerators in human urine and their human exposure. ENVIRONMENTAL RESEARCH 2025; 270:121018. [PMID: 39914713 DOI: 10.1016/j.envres.2025.121018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/13/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
Thiuram vulcanization accelerators (TVAs) have been identified in multiple dust samples, suggesting a broad extent of their human exposure. However, until recently, the presence of these compounds in human urine, which is an ideal medium for evaluating exposure levels, has not been examined. In this study, we conducted a comprehensive analysis of ten types of TVAs in urine samples collected from 201 individuals residing in Quzhou City, China. Our findings revealed the presence of eight TVAs in the human urine samples, with detection frequencies varying between 14% and 91%. Among these TVAs, tetramethylthiuram disulfide (TMTD; mean 5.3 ng/mL, range
Collapse
Affiliation(s)
- Zhenling Fu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang, 324400, PR China
| | - Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Qian Miao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China.
| |
Collapse
|
2
|
Wu X, Zhu Y, Guo R, Huang J, Jin H, Zhou L. Human urinary occurrence of thiourea vulcanization accelerators and their human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125701. [PMID: 39824334 DOI: 10.1016/j.envpol.2025.125701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Thiourea vulcanization accelerators (TVAs) have been detected in various household dust samples, indicating their widespread human exposure. Until now, the occurrence of TVAs in human urine, a suitable matrix for assessing human exposure, has remained unknown. The present study comprehensively examined eight kinds of TVAs in urine samples (n = 277) from participants living in Taizhou, China. A total of eight TVAs were found in these human urine samples, exhibiting the detection frequencies ranging from 13% to 91%, highlighting widespread exposure among the general population. N, N'-ethylenethiourea (ETU; 1.7 ng mL-1, min-max range, < limits of detection (LOD)-13 ng mL-1) exhibited the highest mean human urinary concentration, followed by N, N'-diethylthiourea (DETU; 0.51 ng mL-1, < LOD-3.1 ng mL-1) and N, N'-diphenylthiourea (DPTU; 0.37 ng mL-1, < LOD-0.69 ng mL-1). Gender-specific analysis demonstrated no significant (p > 0.05) distinctions in urinary concentrations of ETU, DETU, and DPTU between males and females. Additionally, a significantly (p < 0.05) negative correlation was observed between urinary ETU levels and age, with younger individuals showing relatively higher urinary concentrations. Human daily exposure (DE) values of ETU, DETU, and DPTU were estimated, primarily using their determined urinary concentrations and the fraction of these TVAs that were excreted in human urine. The mean DE values of ETU, DETU, and DPTU were 99 ng/kg bw/day, 46 ng/kg bw/day, and 19 ng/kg bw/day, respectively. To our knowledge, the present study comprehensively characterized the human urinary occurrence of TVAs for the first time. These obtained data are important for advancing the knowledge on human exposure to these TVAs.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, PR China
| | - Yingying Zhu
- School of Life Sciences, Taizhou University, Taizhou, Zhejiang, 318000, PR China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Juxiu Huang
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Lisha Zhou
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, PR China.
| |
Collapse
|
3
|
Wang L, Tang W, Sun N, Lv J, Hu J, Tao L, Zhang C, Wang H, Chen L, Xu DX, Zhang Y, Huang Y. Low-dose tire wear chemical 6PPD-Q exposure elicit fatty liver via promoting fatty acid biosynthesis in ICR mice. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137574. [PMID: 39986096 DOI: 10.1016/j.jhazmat.2025.137574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/13/2025] [Accepted: 02/09/2025] [Indexed: 02/24/2025]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q) as a major metabolite of tire wear chemical 6PPD has been demonstrated to be an emerging burden of exposure in human populations, via contamination from drinking water, air particulate matter and food sources. Whilst increasing attention has been moved toward its adverse effect, the potential hepatotoxicity of 6PPD-Q in mammals at realistic dose remains unknown. Here, the toxic effects of 6PPD-Q at environmentally relevant dose on the liver of adult mice and its underlying mechanism were investigated through an integrative approach combining transcriptomic and lipidomic analyses. We found that 6PPD-Q exposure induced excessive lipid deposition following three weeks of exposure, ultimately contributing to the pathogenesis of fatty liver disease. Mechanistically, 6PPD-Q exposure caused a remarkable increase in the contents of fatty acids within the hepatic tissue of mice by enhancing their biosynthesis, thereby facilitating lipid deposition. In summary, this study provides a new understanding on the endocrine disrupting effects of 6PPD-Q on hepatic lipid metabolism and how it may contribute to elevated risk of fatty liver disease. Our findings call for a potential public health attention on the risk assessment of 6PPD-Q, particularly towards the risk of chronic metabolic diseases.
Collapse
Affiliation(s)
- Lili Wang
- Department of General Practice, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Weitian Tang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Nan Sun
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jia Lv
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jiayue Hu
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Lin Tao
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Li Chen
- Department of General Practice, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - De-Xiang Xu
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Yihao Zhang
- School of Public Health, Anhui Medical University, Hefei 230032, China.
| | - Yichao Huang
- School of Public Health, Anhui Medical University, Hefei 230032, China; Clinical Research Center, Suzhou Hospital of Anhui Medical University, Suzhou 234099, China.
| |
Collapse
|
4
|
Xia K, Qin M, Han M, Zhang X, Wu X, Liu M, Liu S, Wang X, Liu W, Xie Z, Yuan R, Liu Q. Elucidating the size distribution of p‑Phenylenediamine-Derived quinones in atmospheric particles. ENVIRONMENT INTERNATIONAL 2025; 197:109329. [PMID: 39978217 DOI: 10.1016/j.envint.2025.109329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/16/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Transformed from p-phenylenediamines (PPDs) antioxidant, PPD-derived quinones (PPD-Qs) have recently been recognized as emerging contaminants due to their potential negative impacts on the environment and human health. While there have been measurements of airborne PPD-Qs, the size distribution of PPD-Qs and the impact of particle size on PPD transformation chemistry remain largely unknown. Here, through the measurements of atmospheric particles in three megacities in China (Beijing, Xi'an, and Hefei), we find that PPD-Qs are widely distributed in these cities. Further analysis of the size-fractioned particles in Hefei indicates that 48 % of PPD-Qs reside in coarse particles. Given that previous studies mainly focus on the measurement of PPD-Qs in fine particles, the previously reported PPD-Q concentrations and the corresponding human exposure dosages are likely to be significantly underestimated. Furthermore, the ratio of PPD-Q to PPD concentration (PPD-Q/PPD) for particles with size range of 0.056 - 0.1 μm is up to 3 times higher than that with size range of 10 - 18 μm, highlighting the key role of particle size in determining the atmospheric oxidation reactivity of PPDs. Model simulations reveal a size-dependent pattern for the estimated concentration of particulate PPD-Qs in human body. In addition, we also demonstrate that PPD-Qs can induce the formation of cellular reactive oxygen species, suggesting that they may pose risks to human health. Overall, our results emphasize the importance of considering the particle size effect when evaluating the reaction potential and exposure risk of airborne PPD-Qs.
Collapse
Affiliation(s)
- Kaihui Xia
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
| | - Meng Qin
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6, Canada
| | - Mingming Han
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; Department of Anesthesiology, The First Affliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xianming Zhang
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6, Canada
| | - Xiaoguo Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Mingyuan Liu
- Division of Ambient Air Monitoring, China National Environmental Monitoring Centre, Beijing 100012, China
| | - Shang Liu
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Xinkai Wang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wei Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhouqing Xie
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
| | - Renmin Yuan
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Qifan Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China; Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China.
| |
Collapse
|
5
|
Chen X, Le Y, Wang W, Ding Y, Wang SQ, Chen R, Xiang H, Qiu XW, Feng H. p-Phenylenediamines and their derived quinones: A review of their environmental fate, human exposure, and biological toxicity. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137373. [PMID: 39869976 DOI: 10.1016/j.jhazmat.2025.137373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/08/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
p-Phenylenediamines (PPDs) are widely used as antioxidants in numerous rubber products to prevent or delay oxidation and corrosion. However, their derived quinones (PPD-Qs), generated through reactions with ozone, are ubiquitous in the environment and raise significant health and toxicity concerns. This review summarizes the current state of knowledge on environmental distribution and fate, human exposure, and biological toxicity of PPDs and PPD-Qs, and makes recommendations for future research directions. Although PPDs and PPD-Qs have been monitored in a variety of environmental matrices, studies on soil, sediment, and organisms remain limited. This shortcoming hinders our understanding of their distribution patterns and migration mechanisms in these specific environments. These contaminants can enter the human body through various exposure routes, but toxicological studies have not yielded sufficient results to derive risk thresholds for the assessment of human health. Most studies examining biological and toxicological effects have focused on acute exposure scenarios, which do not accurately reflect the long-term interactions that occur in natural settings. The toxic effects of PPDs and PPD-Qs on zebrafish, nematodes, and mammals include neurobehavioral changes, reproductive dysfunction, and digestive damage, which are linked to mitochondrial stress, DNA adduct formation, and disrupted lipid metabolism, respectively. However, the underlying toxicological mechanisms remain poorly understood. Future research should prioritize the investigation of the impacts of PPDs and PPD-Qs on various organizational levels within biota to provide a scientific basis for developing effective risk management measures.
Collapse
Affiliation(s)
- Xuefei Chen
- College of Environment and Resources, College of Carbon Neutral, Zhejiang A & F University, Hangzhou 311300, China
| | - Yanna Le
- Hangzhou Hospital for Occupational Disease Prevention and Treatment, Hangzhou 310014, China
| | - Wanyue Wang
- College of Environment and Resources, College of Carbon Neutral, Zhejiang A & F University, Hangzhou 311300, China
| | - Yangcheng Ding
- College of Environment and Resources, College of Carbon Neutral, Zhejiang A & F University, Hangzhou 311300, China
| | - Si-Qi Wang
- South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Ruya Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hai Xiang
- College of Environment and Resources, College of Carbon Neutral, Zhejiang A & F University, Hangzhou 311300, China.
| | - Xia-Wen Qiu
- College of Environment and Resources, College of Carbon Neutral, Zhejiang A & F University, Hangzhou 311300, China; Jinhua Academy, Zhejiang Chinese Medical University, Jinhua 321015, China.
| | - Huajun Feng
- College of Environment and Resources, College of Carbon Neutral, Zhejiang A & F University, Hangzhou 311300, China
| |
Collapse
|
6
|
Lee JG, Lee SM, Hyun M, Heo JD. Tire rubber-derived contaminants 6PPD and 6PPD-quinone reduce attachment and outgrowth of trophoblast spheroids onto endometrial epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117744. [PMID: 39818141 DOI: 10.1016/j.ecoenv.2025.117744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), a synthetic additive widely used in the rubber industry, and its oxidized product 6PPD-quinone (6PPDQ), have garnered widespread attention as an emerging hazardous chemicals owing to their potential detrimental effects on aquatic ecosystem and human health. The effects of 6PPD and 6PPDq on the female reproductive tract, especially embryo implantation, remain unknown and were investigated in this study. We used the spheroid attachment and outgrowth models of BeWo trophoblastic spheroids and Ishikawa cells as surrogates for the human blastocyst and endometrial epithelium, respectively. Treatment with the chemicals for up to 48 h decreased the viability of the cells in a dose- and cell line-dependent manner (20-100 μM 6PPD and 10-100 μM 6PPDQ for both the cell lines). At a noncytotoxic concentration, exposure of Ishikawa cells to 1 and 10 μM 6PPD reduced the attachment of BeWo spheroids and further inhibited their invasion and outgrowth on the endometrial epithelial monolayer. A similar result was observed in 1 μM 6PPDQ-exposed groups. Gene expression profiling of 6PPD- and 6PPDQ-exposed endometrial epithelial cells revealed that both 6PPD and 6PPDQ differentially regulated a panel of transcript markers toward overall downregulation of receptivity and invasion. The study provides the first proof of the adverse effects of 6PPD and 6PPDQ on human endometrial receptivity and trophoblast invasion during the window of implantation, warranting the need for further in vivo and clinical studies.
Collapse
Affiliation(s)
- Jong Geol Lee
- Center for Bio-Health Research, Division of Gyeongnam Bio-Environmental Research, Korea Institute of Toxicology, Jinju 52834, Republic of Korea.
| | - Seon Min Lee
- Center for Bio-Health Research, Division of Gyeongnam Bio-Environmental Research, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Moonjung Hyun
- Center for Bio-Health Research, Division of Gyeongnam Bio-Environmental Research, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Jeong Doo Heo
- Korea Institute of Toxicology, Daejeon 34114, Republic of Korea.
| |
Collapse
|
7
|
Qu J, Mao W, Chen M, Jin H. Prediction of p-phenylenediamine antioxidant concentrations in human urine using machine learning models. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137184. [PMID: 39813931 DOI: 10.1016/j.jhazmat.2025.137184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/17/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
p-phenylenediamine antioxidants (PPDs) are extensively used in rubber manufacturing for their potent antioxidative properties, but PPDs and 2-anilino-5-[(4-methylpentan-2yl)amino]cyclohexa-2,5-diene-1,4-dione (6PPDQ) pose potential environmental and health risks. Existing biomonitoring methods for assessing human exposure to PPDs are labor-intensive, costly, and provide limited data. Thus, there is a critical need to develop predictive models for evaluating PPDs and 6PPDQ exposure levels to facilitate health risk assessments. In this study, machine learning (ML) models were developed to predict the concentration of three PPDs and 6PPDQ in human urine samples. A total of 759 participants from three cities in Zhejiang Province, China, provided urine samples, which were analyzed for PPDs and 6PPDQ concentrations using liquid chromatography-tandem mass spectrometry. Eight ML models were employed to predict PPDs and 6PPDQ concentrations based on demographic and environmental exposure factors such as age, gender, body mass index (BMI), and occupation. N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) was the most frequently detected PPD (mean 3.03 ng/mL, range < LOD-18.65 ng/mL), followed by 6PPDQ (mean 2.76 ng/mL, range < LOD-20.85 ng/mL) and N-phenyl-N'-cyclohexyl-p-phenylenediamine (mean 2.04 ng/mL, range < LOD-10.22 ng/mL). Random forest model demonstrated the highest accuracy in predicting PPDs and 6PPDQ concentrations in human urine among the ML models evaluated. Through the application of these models, age, BMI, and occupation emerged as significant predictors of urinary PPDs and 6PPDQ concentrations. This research significantly contributes by using ML models to enhance exposure assessment accuracy and efficiency, providing a novel framework for future studies on environmental health risks related to PPDs and 6PPDQ.
Collapse
Affiliation(s)
- Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China
| | - Mei Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
8
|
Shi R, Zhang Z, Zeb A, Fu X, Shi X, Liu J, Wang J, Wang Q, Chen C, Sun W, Liu W. Environmental occurrence, fate, human exposure, and human health risks of p-phenylenediamines and their quinones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177742. [PMID: 39608260 DOI: 10.1016/j.scitotenv.2024.177742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/03/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
P-phenylenediamine antioxidants (PPDs) are widely used in the rubber industry and their release and transformation in the environment has become one of the current environmental research hotspots. PPDs are readily oxidized in the environment to form quinone transformation products (PPD-Qs), some of which (e.g. 6PPD-Q) have been shown to be highly toxic and persistent in the environment, posing a potential threat to aquatic organisms and ecosystems. The present study provides an overview of the physicochemical properties, environmental distribution, and potential human exposure and toxicological effects of PPDs and PPD-Qs. PPDs and PPD-Qs are found in water, air, dust and soil around the world, and humans are inevitably exposed to them by inhaling, ingesting and through dermal contact. There is growing evidence indicates that PPDs and PPD-Qs are present in human body fluids and tissues, where they are subject to metabolic and transformational processes in the liver and blood. Furthermore, PPDs and PPD-Qs have the potential to induce adverse health effects, including digestive, respiratory, neurotoxic and reproductive toxicity. Nevertheless, there is a paucity of evidence concerning the direct effects of PPDs and PPD-Qs on human health. Consequently, future research should concentrate on this area in order to provide quantitative support for the assessment of the risk posed by PPDs and PPD-Qs to human health.
Collapse
Affiliation(s)
- Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhao Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, Tianjin 300000, China.
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiuping Fu
- Department of Intelligent Medical Engineering, School of Life Sciences, Tiangong University, Tianjin 300387, China.
| | - Xinwei Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Cuihong Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wei Sun
- Laboratory of Molecular Genetics, School of Medicine, Nankai University, Tianjin 300071, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
9
|
Mao K, Jin H, Mao W, Guo R, Che X. Presence of 1, 3-diphenylguanidine and its derivatives in human urine and their human exposure. ENVIRONMENTAL RESEARCH 2024; 263:120252. [PMID: 39481787 DOI: 10.1016/j.envres.2024.120252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/03/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Recent studies have demonstrated the widespread presence of 1,3-diphenylguanidine (DPG) and its derivatives in environmental matrices. While, the amount of human exposure to these rubber additives remains unclear. In this study, we collected human urine samples from healthy general adults (n = 221) living in Quzhou, China, and analyzed these samples for DPG and its five derivatives. DPG, 1,6-bis(cyano-guanidino)hexane (HCG), 1,3-di-o-tolylguanidine (DTG) and exhibited detection frequencies exceeding 50% in collected human urine. Presence of HCG, 1-(o-tolyl)biguanide (detection frequency 17%), and 1-(4-cyanophenyl)guanidine (6.0%) in human urine was also demonstrated for the first time. The highest mean human urinary concentration was found for DPG (0.89 ng/mL, < LOD-4.7 ng/mL), followed by DTG (0.57 ng/mL, < LOD-3.1 ng/mL) and HCG (0.34 ng/mL, < LOD-1.8 ng/mL). Male participants had consistently higher average human urinary levels of DPG, DTG, and HCG than female subjects, but none of these differences were significant (p > 0.10). DPG and DTQ consistently showed a decline in the human urinary concentrations as age of the participant increased. DPG (mean 170 ng/kg bw/day, median 137 ng/kg bw/day) had the highest human daily exposure amount, followed by DTG (106 ng/kg bw/day, 91 ng/kg bw/day) and HCG (58 ng/kg bw/day, 38 ng/kg bw/day). The study enhances our understanding of human exposure to these rubber additives, which is crucial for assessing their potential health risks.
Collapse
Affiliation(s)
- Kaili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang 324400, PR China
| | - Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China
| | - Ruyue Guo
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China
| | - Xiaoling Che
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China.
| |
Collapse
|
10
|
Wu X, Zhu Y, Guo R, Huang J, Jin H, Zhou L. 2-Mercaptobenzothiazole-derived vulcanization accelerators in urine samples from Chinese adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176815. [PMID: 39393704 DOI: 10.1016/j.scitotenv.2024.176815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
Studies have discovered wide presence of 2-mercaptobenzothiazole (2-MBT) and 2-MBT-derived vulcanization accelerators (MVAs) in household dust samples, suggesting that these chemicals may have been pervasive in the environment. However, despite the potential for human exposure, the presence of MVAs in human urine, a common matrix used for assessing exposure to environmental chemicals, has not been thoroughly investigated. The current study comprehensively analyzed 11 kinds of MVAs in urine samples from the recruited general population (n = 197) living in Taizhou city, China. Five kinds of MVAs were detectable in >50 % of human urine samples. This indicates the widespread exposure to these vulcanization accelerators among the general population. The predominant target analytes in human urine were 2-MBT and 2,2'-dithiobisbenzothiazole (MBTS), with the mean urinary concentrations of 2.7 ng/mL (range
Collapse
Affiliation(s)
- Xiaoyu Wu
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Yingying Zhu
- School of Life Sciences, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Juxiu Huang
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Lisha Zhou
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, PR China.
| |
Collapse
|
11
|
Liu C, Wan S, Cheng Y, Lv Z, Luo S, Liang Y, Xie Y, Leng X, Hu M, Zhang B, Yang X, Zheng G. Occurrence, sources, and human exposure assessment of amine-based rubber additives in dust from various micro-environments in South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177023. [PMID: 39423893 DOI: 10.1016/j.scitotenv.2024.177023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Despite the ubiquitous use and potential health effects of amine-based rubber additives, information regarding their occurrences in indoor environments remains scarce and is basically investigated in traffic-related environments. In this study, a total of 140 dust samples collected from eight indoor micro-environments were analyzed for twelve amine-based rubber additives. Overall, 1,3-diphenylguanidine (DPG), dicyclohexylamine (DCHA), N-(1,3-dimethylbutyl)-N'-phenyl-p-penylenediamine (6PPD), 6PPD-quinone (6PPDQ), and hexa(methoxymethyl)melamine (HMMM) were frequently detected across all micro-environments with detection frequencies of 97 %, 51 %, 71 %, 99 %, and 77 %, respectively. The highest total concentration of amine-based rubber additives was found in parking lots (median 10,300 ng/g), indicating heavier emission sources of these compounds in vehicle-related indoor environments. Despite this, amine-based rubber additives were also frequently detected in various non-vehicle-related environments, such as markets, cinemas, and hotels, probably due to the widespread use of consumer products and more frequent air exchanges with outdoor environments. Further tracking of tire rubber products and paint particles from flooring materials in parking lots revealed that paint particles might be an overlooked contributor to amine-based rubber additives in indoor environments. Finally, the highest estimated daily intakes (EDIs) of all amine-based rubber additives via dust ingestion at home were observed for toddlers (3.48 ng/kg bw/d). This research provides a comprehensive overview of human exposure to a variety of amine-based rubber additives in various indoor environments. ENVIRONMENTAL IMPLICATION: This study highlights the presence of high concentrations of amine-based additives in indoor dust from both traffic-related and non-traffic-related indoor environments. Additional efforts are needed to identify potential sources of amine-based rubber additives indoors, beyond just tire rubber. This is critical because the widespread presence of rubber products in indoor settings could pose a risk to human health.
Collapse
Affiliation(s)
- Chenglin Liu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sheng Wan
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yao Cheng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhong Lv
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shusheng Luo
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuge Liang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yichun Xie
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinrui Leng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Min Hu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bintian Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guomao Zheng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
12
|
Wu X, Hu J, Yuan Z, Wang S, Tong L. p-phenylenediamines (PPDs) and PPD-quinones (PPD-Qs) in human urine and breast milk samples: Urgent need for focus on PPD-Qs and the establishment of health threshold criteria. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136176. [PMID: 39418905 DOI: 10.1016/j.jhazmat.2024.136176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/26/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
PPDs and their oxidation products, PPD-Qs, are emerging environmental contaminants arising from the addition and oxidation of rubber products. Although numerous studies have been conducted to elucidate their risks, the primary focus has been on 6PPD and 6PPD-Q, with limited attention given to other PPDs and especially other PPD-Qs. This study comprehensively examines the occurrences of frequently used PPDs and their degradation products, PPD-Qs, in human urine and breast milk samples. The average concentrations of ΣPPDs and ΣPPD-Qs in urine were 27 ± 78 ng/mL and 16 ± 12 ng/mL, respectively. IPPD and DNPD were the predominant PPDs, while DPPD-Q, CPPD-Q, and IPPD-Q were the predominant PPD-Qs. Notably, the concentrations of 6PPD, CPPD, and DPPD were significantly lower than their oxidized quinone products. Weak or no correlations were observed between most PPDs and their corresponding PPD-Qs, suggesting that PPD-Qs in the human body are primarily derived from direct environmental intake rather than in vivo conversion of PPDs. PPDs and PPD-Qs were widely detected in breast milk, exhibiting concentrations and patterns similar to those found in urine, with comparable major pollutants. Estimated daily intakes of PPDs + PPD-Qs for infants were several μg/(kg·day), with the 95th percentile intake approaching 10 μg/(kg·day).
Collapse
Affiliation(s)
- Xiaoguo Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China.
| | - Jiangshan Hu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Zijiao Yuan
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Shanshan Wang
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China; Wuhu Dongyuan New Country Developing Co., Ltd., Wuhu, Anhui, 241000, PR China; CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Tong
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| |
Collapse
|
13
|
Jiang N, Li M, Wang Z, Hao X, Guo Z, Guo J, Zhang R, Zhang H, Chen J, Geng N. P-phenylenediamines (PPDs) and 6PPD-quinone in tunnel PM 2.5: From the perspective of characterization, emission factors, and health risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136269. [PMID: 39461291 DOI: 10.1016/j.jhazmat.2024.136269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
P-phenylenediamines (PPDs) and a quinone derivative (6PPD-Q), as antioxidants added to tires, can inevitably enter into the environment during tire wear emission, posing potential health and ecological risks. However, investigation on their pollution characteristics in PM2.5 is still lacking, especially for high-pollution scenarios, such as tunnels. Herein, we investigated the pollution characteristics and emission factors, as well as the correlation analysis and daily intakes of PM2.5-bound PPDs and 6PPD-Q in tunnel. The results indicated heavy PPDs and 6PPD-Q pollution were observed in tunnel PM2.5, with the concentration at the two tunnel sites being 3.83 and 8.73 times higher than those at the urban site, respectively. PPDs were negatively correlated to relative humidity and positively to temperature. Emission factors of 6PPD and 6PPD-Q were 3013.54 and 1466.67 ng·veh-1·km-1 for large vehicles. PPDs and 6PPD-Q were most harmful to children, and annual exposure dosages at the tunnel sites were 4.64 times higher than those at the urban site. This study conducted a comparison of PPDs and 6PPD-Q in urban and tunnel environments for the first time. Our findings clarified the key factors to reduce the pollution of PPDs in tunnel and supported policy-making for emission reduction of PPDs and 6PPD-Q.
Collapse
Affiliation(s)
- Nan Jiang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Minzhen Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Zichen Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Xuexin Hao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Zhangpeng Guo
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Jiasen Guo
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Ruiqin Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Haijun Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ningbo Geng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
14
|
Hua X, Wang D. 6-PPD quinone at environmentally relevant concentrations induced damage on longevity in C. elegans: Mechanistic insight from inhibition in mitochondrial UPR response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176275. [PMID: 39278487 DOI: 10.1016/j.scitotenv.2024.176275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
6-PPD quinone (6-PPDQ) exists widely in water environment media, causing acute lethality to some aquatic species. Long-term exposure to 6-PPDQ reduced the lifespan of Caenorhabditis elegans. However, the molecular basis for mitochondrial control of 6-PPDQ toxicity remains largely unclear. Using HSP-6 as marker of mitochondrial unfolded protein response (mt UPR), we observed activation of mt UPR by 0.1 and 1 μg/L 6-PPDQ and inhibition in mt UPR by 10 μg/L 6-PPDQ. Additionally, increased atfs-1, ubl-5, and dve-1 expressions were caused by 0.1 and 1 μg/L 6-PPDQ and decreased expressions of these genes were induced by 10 μg/L 6-PPDQ. Neuronal and intestinal RNA interference (RNAi) of hsp-6 caused susceptibility to 6-PPDQ toxicity on longevity, and atfs-1, ubl-5, and dve-1 acted in neurons and intestine to modulate mt UPR and 6-PPDQ toxicity on longevity. Meanwhile, 6-PPDQ (1 and 10 μg/L) increased expressions of histone methyltransferase genes met-2 and set-6, and decreased expressions of histone demethylase genes jmjd-1.2 and jmjd-3.1. Neuronal RNAi of set-6 and intestinal RNAi of met-2 accelerated hsp-6, atfs-1, ubl-5, and dve-1 expressions and extended lifespan of 6-PPDQ exposed nematodes. In contrast, neuronal RNAi of jmjd-1.2 and jmjd-3.1 and intestinal RNAi of jmjd-1.2 suppressed these 4 gene expressions and reduced lifespan of 6-PPDQ exposed nematodes o. In nematodes, RNAi of hsp-6 could also enhance mitochondrial dysfunction and mitochondrial reactive oxygen species (ROS) induced by 6-PPDQ. Therefore, 6-PPDQ caused damage on longevity was associated with suppression in mt UPR, which was under regulation of certain histone methylation related signals.
Collapse
Affiliation(s)
- Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
15
|
Babaei S, Reguyal F, Sarmah AK. A bibliometric analysis of global research hotspots and progress on emerging environmental pollutants 6PPD and 6PPD-quinone from 2004 to 2024. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124969. [PMID: 39293656 DOI: 10.1016/j.envpol.2024.124969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
The emerging toxicants, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-Q), resulting from environmental exposure to N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), have gained considerable attention owing to their ubiquitous occurrence and high toxicity. We performed a scientometric analysis on this topical area of research over the past two decades, spanning from 2004 to April 2024. The overarching aim was to reveal potential future directions in this research area, exploring several key aspects. These included publication and citation growth trends, relevant subject fields, distribution of contribution by country, influential journals in the field, keyword co-occurrence network and cluster analysis, and identification of top authors. The information was collected from the Scopus database and processed using the VOS viewer software. We observed a notable increase in the number of publications over the past four years. With a share of 46.2% of publications, "Environmental Sciences" dominated as the primary scientific category. Among all journals, "Science of the Total Environment" was the most prolific, publishing 33 documents, accounting for 15.6% of the total records. China, representing 76 publications (36%), followed by the United States, with 40 (18.9%), stood out as the leading countries. The occurrence of keywords such as "Pollution exposure", "Mass spectrometry", and "toxicity" highlighted the importance of assessing the toxicological properties, analytical methods, and environmental implications of these emerging contaminants to mitigate their adverse effects and protect environmental and human health. Cai, Zongwei from Hong Kong Baptist University was highly productive in this field, publishing 11 papers. Based on the bibliometric analysis presented, it seems that the future direction of research on 6PPD and 6PPD-Q will shift towards strategies focused on their removal and treatment.
Collapse
Affiliation(s)
- Shamimeh Babaei
- Department of Civil & Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Febelyn Reguyal
- Department of Civil & Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Ajit K Sarmah
- Department of Civil & Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
16
|
Zhou LJ, Liu S, Wang M, Wu NN, Xu R, Wei LN, Xu XR, Zhao JL, Xing P, Li H, Zeng J, Wu QL. Nationwide occurrence and prioritization of tire additives and their transformation products in lake sediments of China. ENVIRONMENT INTERNATIONAL 2024; 193:109139. [PMID: 39547090 DOI: 10.1016/j.envint.2024.109139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/16/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
As a group of emerging contaminants of global concern, tire additives and their transformation products (TATPs) are causing a severe threat to aquatic ecosystems, particularly the highly lethal effects of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-Q) on certain fish species. Yet, the contamination status of TATPs in the lake ecosystems remains largely uncharacterized. This study conducted the first nationwide monitoring of the distribution characteristics of TATPs in 208 lake sediments collected from five lake regions across China. All the 13 TATPs were identified in lake sediments, with the total levels varying between 1.4 and 1355 ng/g, and 4-hydroxydiphenylamine (4-OH-PPD) as the most dominant. The total levels of TATPs decreased in the following order: Yunnan-Guizhou Plateau > Inner Mongolia-Xinjiang Region, Eastern Plain > Qinghai-Tibet Plateau, and Northeast Plain (p < 0.05). The geographical distribution of TATPs in lake sediments was significantly driven by total organic carbon content, temperature, and population density. N,N'-di-2-naphthyl-p-phenylenediamine, 6PPD-Q, N,N'-diphenyl-p-phenylenediamine, and 4-OH-PPD belonged to high-priority contaminants. Our study emphasizes that emerging pollutant TATPs place significant pressure on lake ecosystems and deserve urgent attention.
Collapse
Affiliation(s)
- Li-Jun Zhou
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Man Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Nian-Nian Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ru Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Ni Wei
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Jian-Liang Zhao
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Peng Xing
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Huabing Li
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Jin Zeng
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Qinglong L Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish Center for Science and Education, University of Chinese Academy of Sciences, Beijing 100039, China; The Fuxianhu Station of Plateau Deep Lake Research, Chinese Academy of Sciences, Yuxi 653100, China.
| |
Collapse
|
17
|
Mao W, Jin H, Guo R, Mao K. Presence of benzotriazole ultraviolet stabilizers in human urine. ENVIRONMENTAL RESEARCH 2024; 260:119556. [PMID: 38969313 DOI: 10.1016/j.envres.2024.119556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Health exposure to benzotriazole ultraviolet stabilizers (BUVSs) may pose diverse toxic impacts on health. Presently, the occurrence of BUVSs in human urine remains inadequately understood. This study analyzed 13 kinds of BUVSs in human urine (n = 182) from the general Chinese adult participants. Totally, nine BUVSs were measurable in these human urine samples. Among the detected BUVSs, 2-(2H-benzotriazol-2-yl)-p-cresol (UV-P) was the most predominant BUVS in the human urine, with the mean concentration of 1.6 μg/g creatinine (
Collapse
Affiliation(s)
- Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang, 324400, PR China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Kaili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China.
| |
Collapse
|
18
|
Liu Z, Li Y, Wang D. Transgenerational response of glucose metabolism in Caenorhabditis elegans exposed to 6-PPD quinone. CHEMOSPHERE 2024; 367:143653. [PMID: 39486626 DOI: 10.1016/j.chemosphere.2024.143653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
In Caenorhabditis elegans, 6-PPD quinine (6-PPDQ) could cause several aspects of toxicity together with alteration in glucose metabolism. However, transgenerational alteration in glucose metabolism remains still unknown after 6-PPDQ exposure. In the current study, we further observed transgenerational increase in glucose content induced by 6-PPDQ (1-10 μg/L). After 1-10 μg/L 6-PPDQ exposure, although expressions of genes controlling gluconeogenesis were not changed in the offspring, expressions of hxk-1, hxk-3, pyk-1, and pyk-2 controlling glycolysis could be decreased in the offspring. Meanwhile, transgenerational decrease in expressions of daf-16 encoding FOXO transcriptional factor and aak-2 encoding AMPK was detected in the offspring of 6-PPDQ (1-10 μg/L) exposed nematodes. RNAi of daf-16 and aak-2 led to more severe transgenerational increase in glucose content and reduction in expressions of hxk-1 and hxk-3 induced by 6-PPDQ. Moreover, RNAi of daf-16, aak-2, hxk-1, hxk-3, pyk-1, and pyk-2 caused susceptibility to transgenerational 6-PPDQ toxicity on locomotion and reproduction. Additionally, 6-PPDQ induced activation of SOD-3 and HSP-6 reflecting anti-oxidation and mitochondrial UPR responses could be inhibited by RNAi of daf-16, aak-2, hxk-1, hxk-3, pyk-1, and pyk-2. Therefore, exposure to 6-PPDQ potentially resulted in transgenerational alteration in glucose metabolism, which provided the possible link to induction of transgenerational 6-PPDQ toxicity in organisms.
Collapse
Affiliation(s)
- Zhenjun Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yunhui Li
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
19
|
Huang Z, Chen C, Guan K, Xu S, Chen X, Lin Y, Li X, Shan Y. Protective role of ghrelin against 6PPD-quinone-induced neurotoxicity in zebrafish larvae (Danio rerio) via the GHSR pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117031. [PMID: 39341137 DOI: 10.1016/j.ecoenv.2024.117031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024]
Abstract
The toxicity mechanisms of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-Q), an antioxidant derivative of 6PPD via ozone reaction commonly used in rubber and tire industries, were investigated in zebrafish larvae with concentrations ranging from 0 to 50 μg/L. Despite normal hatchability, 6PPD-Q exposure led to reduced body length and swimming distance in 120 hours post-fertilization (hpf) larvae. At the highest concentration (50 μg/L), 6PPD-Q significantly impaired dopaminergic neuron development and neurotransmitter levels, including dopamine, 5-hydroxytryptamine, and glutamate. Transcriptome profiling unveiled perturbations in growth and developmental gene expression, such as upregulation of runx2a, runx2b, and ghrl (ghrelin and obestatin prepropeptide), and downregulation of stat1b, auto1, and cidea. Notably, anamorelin, a growth hormone secretagogue receptor (GHSR) agonist, recovered the behavioral deficits induced by 6PPD-Q, implying a neuroprotective role of ghrelin possibly mediated via the ghrelin/GHSR pathway. Collectively, our findings indicate that ghrelin upregulation may counteract 6PPD-Q toxicity in zebrafish larvae, shedding light on potential therapeutic avenues for mitigating the adverse effects of this antioxidant byproduct.
Collapse
Affiliation(s)
- Zhengwei Huang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorders, Wenzhou, Zhejiang 325000, China; College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Congcong Chen
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorders, Wenzhou, Zhejiang 325000, China; College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Kaiyu Guan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Shengnan Xu
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyu Chen
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yihao Lin
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorders, Wenzhou, Zhejiang 325000, China; College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Yunfeng Shan
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
20
|
Huang J, Jin H, Zhu Y, Guo R, Zhou L, Wu X. Presence of N, N'-Substituted p-Phenylenediamine-Derived Quinones in Human Urine. TOXICS 2024; 12:733. [PMID: 39453153 PMCID: PMC11511057 DOI: 10.3390/toxics12100733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Human exposure to various N,N'-substituted p-phenylenediamine-derived quinones (PPDQs) has been of increasing concern. Recent studies have examined N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine-derived quinone (6PPDQ) in human urine to evaluate human exposure. However, other PPDQs in human urine have not been thoroughly investigated. This study analyzed six PPDQs in urine collected from 149 healthy individuals in Taizhou, China. All target PPDQs were detected, with 6PPDQ (mean 2.4 ng/mL,
Collapse
Affiliation(s)
- Juxiu Huang
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou 318000, China; (J.H.); (L.Z.)
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China; (H.J.); (R.G.)
| | - Yingying Zhu
- School of Life Sciences, Taizhou University, Taizhou 318000, China;
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China; (H.J.); (R.G.)
| | - Lisha Zhou
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou 318000, China; (J.H.); (L.Z.)
| | - Xiaoyu Wu
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou 318000, China; (J.H.); (L.Z.)
| |
Collapse
|
21
|
Miao Z, Li S, Song X, Ren F, Jin H. Discovery of perfluoroalkyl sulfonyl quaternary ammonium substances in the environment and their environmental behaviors. WATER RESEARCH 2024; 263:122189. [PMID: 39096813 DOI: 10.1016/j.watres.2024.122189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
A variety of per- and polyfluoroalkyl substances (PFASs) have been released into the environment via wastewater treatment plant (WWTP) effluent, with current target and nontarget analytical methods typically focusing on negatively ionized PFASs while largely overlooking positively ionized ones. In this study, five cationic PFASs, perfluoroalkyl sulfonyl quaternary ammonium substances (PFAQASs), were first identified in surface water impacted by the WWTP effluent, applying a metabolomics-based nontarget analysis method. Environmental behaviors of identified novel PFAQASs were further investigated. In surface water, sediment, and fish (Coilia mystus) samples collected from the Yangtze River, 8:3 PFAQA was consistently the predominant PFAQASs, with the mean concentrations of 90 ng/L (< LOD-558 ng/L), 92 ng/g dw (< LOD-421 ng/g dw), and 2.3 ng/g ww (< LOD-4.6 ng/g ww), respectively. This study highlights the necessity to discover other cationic PFASs in the environment. Among PFAQASs, 8:4 PFAQA (4.2, range 3.4 - 4.6) had the highest mean sediment-water partitioning coefficient (log Koc), followed by 8:3 PFAQA (3.9, 2.8 - 4.5) and 6:3 PFAQA (3.7, 3.3 - 4.1). The log Koc of PFAQASs showed a general increase trend with the increasing carbon chain length. Mean bioaccumulation factor (BAF) values of PFAQASs calculated in the collected fish from the Yangtze River ranged from 1.9 ± 0.32 (4:3 PFAQA) to 2.9 ± 0.34 (8:4 PFAQA). The mean BAF values of PFAQASs generally increased with the carbon chain length. Further studies are warranted to elucidate the environmental fate, potential toxicity, and human exposure implications for these identified novel PFASs.
Collapse
Affiliation(s)
- Zhijia Miao
- Hebei Center for Ecological and Environmental Geology Research, Hebei GEO University, Shijiazhuang, 050031, PR China; School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050031, PR China
| | - Shuoyang Li
- Hebei Center for Ecological and Environmental Geology Research, Hebei GEO University, Shijiazhuang, 050031, PR China; School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050031, PR China
| | - Xueqiang Song
- Hebei Center for Ecological and Environmental Geology Research, Hebei GEO University, Shijiazhuang, 050031, PR China; School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050031, PR China
| | - Fangfang Ren
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China.
| |
Collapse
|
22
|
Mao W, Qu J, Guo R, Chen Y, Jin H, Xu J. Association between Serum 6:2 Chlorinated Polyfluorinated Ether Sulfonate Concentrations and Lung Cancer. TOXICS 2024; 12:603. [PMID: 39195705 PMCID: PMC11359344 DOI: 10.3390/toxics12080603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024]
Abstract
6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) exhibits pronounced estrogenic effects, potentially influencing the etiology of lung cancer. This study assessed the potential associations between serum concentrations of 6:2 Cl-PFESA and lung cancer risk at the population level. Odds ratios (ORs) for lung cancer across serum 6:2 Cl-PFESA quartiles were assessed using conditional logistic regression. Additionally, we investigated potential effect modification by various confounding factors. Elevated serum levels of 6:2 Cl-PFESA were consistently associated with an increased risk of lung cancer in both the crude model (OR = 1.62, 95% CI: 1.08-2.42, p = 0.018) and the adjusted model (OR = 1.59, 95% CI: 1.06-2.39, p = 0.026). Stratified analyses revealed that elevated serum levels of 6:2 Cl-PFESA were associated with increased risk estimates of lung cancer among males (adjusted OR = 2.04, 95% CI: 1.19-3.51, p = 0.006), smokers (adjusted OR = 2.48, 95% CI: 1.25-4.89, p = 0.003), and drinkers (adjusted OR = 2.20, 95% CI: 0.94-5.16, p = 0.049). The results of this study imply that exposure to 6:2 Cl-PFESA at levels considered environmentally relevant may be linked to an elevated risk of developing lung cancer.
Collapse
Affiliation(s)
- Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou 324000, China;
| | - Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China; (J.Q.); (R.G.); (H.J.)
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China; (J.Q.); (R.G.); (H.J.)
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China; (J.Q.); (R.G.); (H.J.)
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China; (J.Q.); (R.G.); (H.J.)
| | - Jingyan Xu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou 324000, China;
| |
Collapse
|
23
|
Wan X, Liang G, Wang D. Neurotoxicity and accumulation of CPPD quinone at environmentally relevant concentrations in Caenorhabditis elegans. CHEMOSPHERE 2024; 361:142499. [PMID: 38824792 DOI: 10.1016/j.chemosphere.2024.142499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
CPPD quinone (CPPDQ) is a member of PPDQs, which was widely distributed in different environments. Using Caenorhabditis elegans as an animal model, we here examined neurotoxicity and accumulation of CPPDQ and the underlying mechanism. After exposure to 0.01-10 μg/L CPPDQ, obvious body accumulation of CPDDQ was detected. Meanwhile, exposure to CPPDQ (0.01-10 μg/L) decreased head thrash, body bend, and forward turn, and increased backward turn. Nevertheless, only exposure to 10 μg/L CPPDQ induced neurodegeneration in GABAergic system. Exposure to CPPDQ (0.01-10 μg/L) further decreased expressions of daf-7 encoding TGF-β ligand, jnk-1 encoding JNK MAPK, and mpk-1 encoding ERK MAPK. Additionally, among examined G protein-coupled receptor (GPCR) genes, exposure to CPPDQ (0.01-10 μg/L) decreased dcar-1 expression and increased npr-8 expression. RNAi of daf-7, jnk-1, mpk-1, and dcar-1 resulted in susceptibility, and nhr-8 RNAi caused resistance to CPPDQ neurotoxicity and accumulation. Moreover, in CPPDQ exposed nematodes, RNAi of dcar-1 decreased jnk-1 and mpk-1 expressions, and RNAi of npr-8 increased mpk-1 expression. Therefore, exposure to CPPDQ potentially resulted in neurotoxicity by inhibiting TGF-β, JNK MAPK, and ERK MAPK signals. The inhibition in JNK MAPK and ERK MAPKs signals in CPPDQ exposed nematodes was further related to alteration in GPCRs of DCAR-1 and NHR-8 in nematodes.
Collapse
Affiliation(s)
- Xin Wan
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
24
|
Fu Z, Jin H, Mao W, Yin S, Xu L, Hu Z. Conjugated metabolites of bisphenol A and bisphenol S in indoor dust, outdoor dust, and human urine. CHEMOSPHERE 2024; 362:142617. [PMID: 38880259 DOI: 10.1016/j.chemosphere.2024.142617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Bisphenol A (BPA) and bisphenol S (BPS) have been widely spread in the global environment. However, for conjugated BPA and BPS metabolites, limited studies have investigated their occurrence in environmental matrices. We collected paired indoor and outdoor dust (n = 97), as well as human urine (n = 153) samples, from residential houses in Quzhou, China, and measured these samples for 8 conjugated BPA and BPS metabolites. Three BPA metabolites were found in collected indoor and outdoor dust, with BPA sulfate (mean 0.75 and 1.3 ng/g, respectively) and BPA glucuronide (0.13 and 0.26 ng/g) being more abundant. BPA conjugates accounted for a mean of 42 and 56% of total BPA (sum of conjugated BPA and BPA metabolites) in indoor and outdoor dust, respectively. BPS sulfate (mean 0.29 and 0.82 ng/g, respectively) had consistently higher concentrations than BPS glucuronide (0.13 and 0.27 ng/g) in indoor and outdoor samples. BPS conjugates contributed a mean 32% and 45% of total BPS (sum of BPS and BPS metabolites) in indoor and outdoor dust, respectively. Moreover, conjugated BPA and BPS metabolites in indoor or outdoor dust were not significantly correlated with those in urine from residents. Overall, this study first demonstrates the wide presence of conjugated BPA and BPS metabolites, besides BPA and BPS, in indoor and outdoor dust. These data are important for elucidating the sources of conjugated BPA and BPS metabolites in the human body.
Collapse
Affiliation(s)
- Zhenling Fu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Sihui Yin
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Luyao Xu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Zefu Hu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China.
| |
Collapse
|
25
|
Qu J, Guo R, Liu L, Ren F, Jin H. Occurrence of bisphenol analogues and their conjugated metabolites in foodstuff. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174922. [PMID: 39038674 DOI: 10.1016/j.scitotenv.2024.174922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/23/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Bisphenol analogues (BPs) are prevalent in diverse foodstuff samples worldwide. However, the occurrence of conjugated bisphenol A (BPA) and bisphenol S (BPS) metabolites in foodstuff remains poorly understood. This study analyzed eight BPs, and four conjugated BPA and BPS metabolites, in three animal-derived foodstuff and five plant-derived foodstuff samples from China. Results showed that fish foodstuff (9.7 ng/g ww) contained the highest mean concentration of BPA, followed by rice (5.1 ng/g ww) and beans foodstuff (3.6 ng/g ww). BPA-sulfate had higher mean concentrations than BPA-glucuronide in different foodstuff categories, except that in eggs foodstuff (p < 0.05). Compared with other foodstuff items, fish (3.4 ng/g ww) and vegetable (1.6 ng/g ww) foodstuff samples exhibited comparatively higher mean concentrations of BPS. Mean concentrations of BPS-sulfate were consistently higher than BPS-glucuronide in vegetables, meats, and fish foodstuff (p < 0.05). BPA contributed the major total dietary intake (DI) of BPs, with the mean DI of 435 ng/kg bw/day for women and 374 ng/kg bw/day for men, respectively. To our knowledge, this study is the first to investigate the occurrence of conjugated BPA and BPS metabolites in foodstuff, which enhances our comprehension of the origins of these conjugated metabolites in the human body.
Collapse
Affiliation(s)
- Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Lin Liu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Fangfang Ren
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
26
|
Qian Y, Zhu J, Guo R, Jin H. Bisphenol S and Its Chlorinated Derivatives in Indoor Dust and Human Exposure. TOXICS 2024; 12:448. [PMID: 39058100 PMCID: PMC11280507 DOI: 10.3390/toxics12070448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024]
Abstract
Bisphenol S (BPS), an environmental endocrine disruptor, has been identified in global environmental matrices. Nevertheless, limited studies have investigated the presence of chlorinated analogues of BPS (Clx-BPSs) with potential estrogenic activities in environmental matrices. In this study, the occurrence of BPS and five types of Clx-BPSs was characterized in indoor dust (n = 178) from Hangzhou City. BPS was measurable in 94% of indoor dust samples, with an average level of 0.63 μg/g (
Collapse
Affiliation(s)
- Yi Qian
- Department of Environmental Engineering, Taizhou University, Taizhou 318000, China
| | - Jianqiang Zhu
- Department of Environmental Engineering, Taizhou University, Taizhou 318000, China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
27
|
Chen Y, Guo R, Liao K, Yu W, Wu P, Jin H. Discovery of novel benzotriazole ultraviolet stabilizers in surface water. WATER RESEARCH 2024; 257:121709. [PMID: 38728781 DOI: 10.1016/j.watres.2024.121709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/20/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
The comprehensive understanding of the occurrence of benzotriazole UV stabilizers (BZT-UVs) in environmental surface water is imperative due to their widespread application and potential aquatic toxicity. We conducted an analysis of 13 traditional BZT-UVs in surface water samples collected from Taihu Lake (TL, n = 23) and Qiantang River (QR, n = 22) in China. The results revealed that 5‑chloro-2-(3,5-di-tertbutyl-2-hydroxyphenyl)-benzotriazole (UV-327) was consistently the predominant BZT-UV in water samples from TL (mean 16 ng/L; detection frequency 96 %) and QR (14 ng/L; 91 %). Furthermore, we developed a characteristic fragment ion-based strategy to screen and identify unknown BZT-UVs in collected surface water, utilizing a high-resolution mass spectrometer. A total of seven novel BZT-UVs were discovered in water samples, and their chemical structures were proposed. Four of these novel BZT-UVs were further confirmed with standards provided by industrial manufacturers. Semi-quantitative analysis revealed that among discovered novel BZT-UVs, 2-(2‑hydroxy-3‑tert‑butyl‑5-methylphenyl)-benzotriazole was consistently the predominant novel BZT-UV in TL (mean 4.1 ng/L, detection frequency 70 %) and QR (2.8 ng/L, 77 %) water. In TL water, the second predominant novel BZT-UV was 2-(3-allyl-2‑hydroxy-5-methylphenyl)-2H-benzotriazole (mean 3.9 ng/L,
Collapse
Affiliation(s)
- Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Kaizhen Liao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Wenfei Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Pengfei Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
28
|
Wang Y, Liang G, Chao J, Wang D. Comparison of intestinal toxicity in enhancing intestinal permeability and in causing ROS production of six PPD quinones in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172306. [PMID: 38593884 DOI: 10.1016/j.scitotenv.2024.172306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
As the derivatives of p-phenylenediamines (PPDs), PPD quinones (PPDQs) have received increasing attention due to their possible exposure risk. We compared the intestinal toxicity of six PPDQs (6-PPDQ, 77PDQ, CPPDQ, DPPDQ, DTPDQ and IPPDQ) in Caenorhabditis elegans. In the range of 0.01-10 μg/L, only 77PDQ (10 μg/L) moderately induced the lethality. All the examined PPDQs at 0.01-10 μg/L did not affect intestinal morphology. Different from this, exposure to 6-PPDQ (1-10 μg/L), 77PDQ (0.1-10 μg/L), CPPDQ (1-10 μg/L), DPPDQ (1-10 μg/L), DTPDQ (1-10 μg/L), and IPPDQ (10 μg/L) enhanced intestinal permeability to different degrees. Meanwhile, exposure to 6-PPDQ (0.1-10 μg/L), 77PDQ (0.01-10 μg/L), CPPDQ (0.1-10 μg/L), DPPDQ (0.1-10 μg/L), DTPDQ (1-10 μg/L), and IPPDQ (1-10 μg/L) resulted in intestinal reactive oxygen species (ROS) production and activation of both SOD-3::GFP and GST-4::GFP. In 6-PPDQ, 77PDQ, CPPDQ, DPPDQ, DTPDQ, and/or IPPDQ exposed nematodes, the ROS production was strengthened by RNAi of genes (acs-22, erm-1, hmp-2, and pkc-3) governing functional state of intestinal barrier. Additionally, expressions of acs-22, erm-1, hmp-2, and pkc-3 were negatively correlated with intestinal ROS production in nematodes exposed to 6-PPDQ, 77PDQ, CPPDQ, DPPDQ, DTPDQ, and/or IPPDQ. Therefore, exposure to different PPDQs differentially induced the intestinal toxicity on nematodes. Our data highlighted potential exposure risk of PPDQs at low concentrations to organisms by inducing intestinal toxicity.
Collapse
Affiliation(s)
- Yuxing Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Geyu Liang
- School of Public Health, Southeast University, Nanjing, China
| | - Jie Chao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
29
|
Mao W, Jin H, Guo R, Chen P, Zhong S, Wu X. Occurrence of p-phenylenediamine antioxidants in human urine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:170045. [PMID: 38218487 DOI: 10.1016/j.scitotenv.2024.170045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/14/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
General populations are widely exposed to various p-phenylenediamine antioxidants (PPDs). N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), a typical p-phenylenediamine antioxidant, has been detected in human urine samples. However, the occurrence of other widely used PPDs in human urine is still unclear. This study comprehensively characterized the occurrence of 9 PPDs in human urine from 151 Chinese adults. Our results showed that all target PPDs were detected in human urine samples, with the total concentrations of PPDs ranging from 0.41 to 38 ng/mL. PPDs in human urine was dominated by 6PPD (mean 1.2 ng/mL, range < LOD - 3.8 ng/mL), followed by N-phenyl-N'-cyclohexyl-p-phenylenediamine (CPPD; 0.85 ng/mL,
Collapse
Affiliation(s)
- Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang 324400, PR China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Ping Chen
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China
| | - Songyang Zhong
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China
| | - Xilin Wu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China.
| |
Collapse
|
30
|
Zhu J, Guo R, Ren F, Jiang S, Jin H. Occurrence and partitioning of p-phenylenediamine antioxidants and their quinone derivatives in water and sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:170046. [PMID: 38218485 DOI: 10.1016/j.scitotenv.2024.170046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
p-Phenylenediamine antioxidants (PPDs) and PPDs-derived quinones (PPDQs) may pose a threat to the river ecosystem. However, the knowledge on the occurrence and environmental behaviors of PPDs and PPDQs in the natural river environment remains unknown. In this study, we collected paired water (n = 30) and sediment samples (n = 30) from Jiaojiang River, China and analyzed them for nine PPDs and seven PPDQs. Our results showed that target PPDs and PPDQs are frequently detected in water samples, with the dominance of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD; mean 12 ng/L, range 4.0-72 ng/L) and 6PPD-derived quinone (6PPDQ; 7.0 ng/L,
Collapse
Affiliation(s)
- Jianqiang Zhu
- Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Fangfang Ren
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Shengtao Jiang
- Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang 324400, PR China.
| |
Collapse
|