1
|
Jin Y, Zhou Z, Yuan Z, Hu R, Zhang T, Chen S, Chen G. Biochar derived from straw residue prepared via combined pre-treatment designed for efficient removal of tetracycline hydrochloride and sulfadiazine sodium salt. Int J Biol Macromol 2024; 280:136129. [PMID: 39482126 DOI: 10.1016/j.ijbiomac.2024.136129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
In this study, straw residue (SR) was prepared from corn straw by a combined pre-treatment method that involved both microbial treatment (Myrothecium verrucaria, Aspergillus niger, and Trichoderma reesei) and treatment with ρ-toluenesulfonic acid. After pre-treatment, the cellulose content of the residues reached 79.3 %, 72.1 %, 83.5 %, and 85.2 %, respectively. The results indicated that Aspergillus niger and Trichoderma reesei effectively destroyed the corn stover structure, improving the efficiency of the subsequent treatment. Following carbonation and activation processes, the SRs were converted into a series of biochars (ACCC, ACMC, ACTC, and ACNC) with large specific surface areas (2343, 2219, 2693, 2672 m2 g-1). The prepared biochars demonstrated excellent performance in adsorption tests performed using tetracycline hydrochloride (TC) and sulfadiazine sodium salt (SDZ) as adsorption models. The maximum adsorption capacities recorded for TC (908, 1117, 1216, and 1189 mg/g) and SDZ (930, 965, 1033, and 1083 mg/g) were higher than most of the other adsorbents. Furthermore, the potential adsorption mechanisms included pore filling, π-π interactions, hydrogen bonding, and electrostatic attraction. Even after 5 test cycles, the biochar retained over 75 % of its adsorption performance, highlighting its strong potential for applications in removing antibiotics from water.
Collapse
Affiliation(s)
- Yiping Jin
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Biology and Utilization, the Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Zhongwen Zhou
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Biology and Utilization, the Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Zekai Yuan
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Biology and Utilization, the Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Runjia Hu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Biology and Utilization, the Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Tianran Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Biology and Utilization, the Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Siji Chen
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Biology and Utilization, the Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Guang Chen
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Biology and Utilization, the Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
2
|
Kong S, Wang S, He Y, Wang N, Wang Z, Weng L, Liu D, Zhao X, Chen J, Xu J, Cai Y, Ying H. Three-Stage Solid-State Fermentation Technology for Distillers’ Grain Feed Protein Based on Different Microorganisms Considering Oxygen Requirements. FERMENTATION-BASEL 2024; 10:550. [DOI: 10.3390/fermentation10110550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The shortage of feed protein has plagued the development of the animal husbandry industry in China. In this study, a new three-stage fermentation technology for producing distillers’ grain feed protein was developed by introducing Aspergillus niger, yeast, and lactic acid bacteria. During the aerobic stage, there was a negative correlation between the reducing sugar content in the distillers’ grains and the amount of Aspergillus niger. The maximum reducing sugar concentration (36.89 mg g−1) was obtained when the oxygen supply was 30 mL min−1 and the fermentation time was two days. During the microaerophilic stage, the natural exchange of oxygen achieved optimal true protein enhancement (from 10.8% to 16.4%) among the three oxygen supply modes (natural exchange, forced ventilation, and filling supplement). During the anaerobic stage, lactic acid bacteria were inoculated for feed protein preservation and flavor enhancement. Our results provided insight and practical guidance for the high-value use of distillers’ grains.
Collapse
Affiliation(s)
- Songlin Kong
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yun He
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Nan Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- College of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Longfei Weng
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Dong Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xiaoling Zhao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jinmeng Chen
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
3
|
Dodangeh F, Nabipour H, Rohani S, Xu C. Applications, challenges and prospects of superabsorbent polymers based on cellulose derived from lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2024; 408:131204. [PMID: 39102965 DOI: 10.1016/j.biortech.2024.131204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
The synthetic superabsorbent polymers (SAPs) market is experiencing significant growth, with applications spanning agriculture, healthcare, and civil engineering, projected to increase from $9.0 billion USD in 2019 to $12.9 billion USD by 2024. Despite this positive trend, challenges such as fluctuating raw material costs and lower biodegradability of fossil fuel-based SAPs could impede further expansion. In contrast, cellulose and its derivatives present a sustainable alternative due to their renewable, biodegradable, and abundant characteristics. Lignocellulosic biomass (LCB), rich in cellulose and lignin, shows promise as a source for eco-friendly superabsorbent polymer (SAP) production. This review discusses the applications, challenges, and future prospects of SAPs derived from lignocellulosic resources, focusing on the cellulose extraction process through fractionation and various modification and crosslinking techniques. The review underscores the potential of cellulose-based SAPs to meet environmental and market needs, offering a viable path forward in the quest for more sustainable materials.
Collapse
Affiliation(s)
- Fatemeh Dodangeh
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada
| | - Hafezeh Nabipour
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada
| | - Sohrab Rohani
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada.
| | - Chunbao Xu
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|