1
|
Ghozzy EA, El-Enany NM, Tolba MM, El Abass SA. An eco-friendly and cost-effective HPTLC method for quantification of COVID-19 antiviral drug and co-administered medications in spiked human plasma. Sci Rep 2024; 14:10025. [PMID: 38693137 PMCID: PMC11063142 DOI: 10.1038/s41598-024-56923-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/12/2024] [Indexed: 05/03/2024] Open
Abstract
The coronavirus-2 has led to a global pandemic of COVID-19 with an outbreak of severe acute respiratory syndrome leading to worldwide quarantine measures and a rise in death rates. The objective of this study is to propose a green, sensitive, and selective densitometric method to simultaneously quantify remdesivir (REM) in the presence of the co-administered drug linezolid (LNZ) and rivaroxaban (RIV) in spiked human plasma. TLC silica gel aluminum plates 60 F254 were used as the stationary phase, and the mobile phase was composed of dichloromethane (DCM): acetone (8.5:1.5, v/v) with densitometric detection at 254 nm. Well-resolved peaks have been observed with retardation factors (Rf) of 0.23, 0.53, and 0.72 for REM, LNZ, and RIV, respectively. A validation study was conducted according to ICH Q2 (R1) Guidelines. The method was rectilinear over the concentration ranges of 0.2-5.5 μg/band, 0.2-4.5 μg/band and 0.1-3.0 μg/band for REM, LNZ and RIV, respectively. The sensitivities of REM, LIN, and RIV were outstanding, with quantitation limits of 128.8, 50.5, and 55.8 ng/band, respectively. The approach has shown outstanding recoveries ranging from 98.3 to 101.2% when applied to pharmaceutical formulations and spiked human plasma. The method's greenness was assessed using Analytical Eco-scale, GAPI, and AGREE metrics.
Collapse
Affiliation(s)
- Ekram A Ghozzy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 35712, Egypt
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Nahed M El-Enany
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, New Mansoura University, New Mansoura, 7723730, Egypt
| | - Manar M Tolba
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Samah Abo El Abass
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
2
|
Hoseininezhad-Namin MS, Rahimpour E, Jouyban A. Favipiravir, remdesivir, and lopinavir: metabolites, degradation products and their analytical methods. Drug Metab Rev 2024; 56:127-144. [PMID: 38445647 DOI: 10.1080/03602532.2024.2326415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
Severe acute respiratory syndrome 2 (SARS-CoV-2) caused the emergence of the COVID-19 pandemic all over the world. Several studies have suggested that antiviral drugs such as favipiravir (FAV), remdesivir (RDV), and lopinavir (LPV) may potentially prevent the spread of the virus in the host cells and person-to-person transmission. Simultaneously with the widespread use of these drugs, their stability and action mechanism studies have also attracted the attention of many researchers. This review focuses on the action mechanism, metabolites and degradation products of these antiviral drugs (FAV, RDV and LPV) and demonstrates various methods for their quantification and discrimination in the different biological samples. Herein, the instrumental methods for analysis of the main form of drugs or their metabolite and degradation products are classified into two types: optical and chromatography methods which the last one in combination with various detectors provides a powerful method for routine and stability analyses. Some representative studies are reported in this review and the details of them are carefully explained. It is hoped that this review will be a good guideline study and provide a better understanding of these drugs from the aspects investigated in this study.
Collapse
Affiliation(s)
- Mir Saleh Hoseininezhad-Namin
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Khalil HA, El-Kimary EI, El-Yazbi AF, Belal TS. Multiple green spectroscopic methods for erdosteine determination in bulk and dosage form with extensive greenness evaluation. Sci Rep 2023; 13:18216. [PMID: 37880475 PMCID: PMC10600230 DOI: 10.1038/s41598-023-45334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023] Open
Abstract
Four simple, sensitive, economical, and eco-friendly spectrophotometric and spectrofluorimetric methods for the assay of erdosteine (ERD) in bulk and dosage form have been developed and validated as per the current ICH guidelines. Method I involved the addition of the powerful oxidizing agent, potassium permanganate to ERD and measuring the oxidation product at 600 nm. Another oxidizing agent; ceric ammonium sulfate was used in Method II where ERD is oxidized resulting in a decline in the absorbance intensity of cerium (IV) ions, measured at 320 nm. Similarly, Method III employed the use of ceric ammonium sulfate, However, the fluorescence intensity of the resulting cerium (III) ions was recorded at λex/λem 255/355 nm, respectively. Whereas in Method IV, ERD was added to acriflavine leading to a proportional decrease in its native fluorescence. Various reaction conditions affecting the intensity of measurement were attentively investigated, optimized, and validated. All the suggested methods did not require any tedious extraction procedures nor organic solvents. The implementation of the proposed methods in ERD assay resulted in linear relationships between the measured signals and the corresponding concentrations of ERD in the range of 1-6, 0.1-1.0, 0.01-0.1, and 10-100 μg/mL with LOD values 0.179, 0.024, 0.0027 and, 3.2 μg/mL for methods I, II, III and IV respectively. The suggested methods were successfully applied to ERD analysis in pure form and in commercial capsules. Furthermore, the eco-friendliness of the proposed methods was thoroughly checked using various greenness testing tools. Lastly, this work, not only presents highly sensitive, green, mix-and-read methods for ERD determination, but also, describes the determination of ERD spectrofluorimetrically for the first time in the literature.
Collapse
Affiliation(s)
- Hadeel A Khalil
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Alexandria University, 1 El Khartoum Square, Alexandria, 21521, Egypt
| | - Eman I El-Kimary
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Alexandria University, 1 El Khartoum Square, Alexandria, 21521, Egypt
| | - Amira F El-Yazbi
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Alexandria University, 1 El Khartoum Square, Alexandria, 21521, Egypt.
| | - Tarek S Belal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Alexandria University, 1 El Khartoum Square, Alexandria, 21521, Egypt
| |
Collapse
|
4
|
Bartels I, Jaeger M, Schmidt TC. Determination of anti-SARS-CoV-2 virustatic pharmaceuticals in the aquatic environment using high-performance liquid chromatography high-resolution mass spectrometry. Anal Bioanal Chem 2023; 415:5365-5377. [PMID: 37439856 PMCID: PMC10444687 DOI: 10.1007/s00216-023-04811-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/17/2023] [Accepted: 06/16/2023] [Indexed: 07/14/2023]
Abstract
The Covid-19 pandemic has affected the global population since 2019. The rapid development and approval of vaccines has brought relief. Yet, effective cures are still being researched. Even if the pandemic situation may end, SARS-CoV-2 will remain and, thus, continued application of the drugs will lead to emissions of the active ingredients into the aquatic environment, as with other anthropogenic micropollutants. However, a general method for trace analysis of antiviral drugs is still missing. To this purpose, favipiravir, remdesivir, its active metabolite GS-441524, molnupiravir and its active metabolite EIDD-1931 were selected as representative analytes. A method was developed based on solid phase extraction and high-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight high-resolution mass spectrometry. Optimization comprised the choice of chromatographic columns, elution gradient, mass spectrometry and tandem mass spectrometry parameters. Solid phase extraction proved suitable for increase in limits of detection and quantitation. amelioration of the limits of detection and quantitation. Matrix effects were investigated applying the optimized method to a wastewater sample with added virustatics. All five compounds could be separated with reversed phase chromatography, whereas EIDD-1931 profited from hydrophilic interaction liquid chromatography. The optimized method yielded limits of detection and quantification of 2.1·10-1, 6.9·10-1 µg·L-1 for favipiravir, 1.8·10-3, 5.5·10-3 µg·L-1 for remdesivir, 1.9·10-3, 7.6·10-3 µg·L-1 for GS-441524, 2.9·10-3, 8.7·10-3 µg·L-1 for molnupiravir, and 1.3·10-1, 3.8·10-1 µg·L-1 for EIDD 1931. The method was first applied to compound stability testing at pH 2.8 and 9.7. At pH 2.8, remdesivir, GS-441524 and molnupiravir proved stable, whereas about 14% of EIDD-1931 and favipiravir were degraded. All five antiviral compounds were almost completely decomposed at pH 9.7. The application of the method was further demonstrated for potential transformation product detection on favipiravir ozonation monitoring.
Collapse
Affiliation(s)
- Indra Bartels
- Department of Chemistry and ILOC, Niederrhein University of Applied Sciences, Frankenring 20, 47798, Krefeld, Germany
- Faculty of Chemistry, University Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Martin Jaeger
- Department of Chemistry and ILOC, Niederrhein University of Applied Sciences, Frankenring 20, 47798, Krefeld, Germany.
| | - Torsten C Schmidt
- Faculty of Chemistry, University Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| |
Collapse
|
5
|
Chen D, Bu X, Xu X, Wang B, Zhang M, Gan Y, Yuan H, Xia X. In-pipette-tip kapok fiber-supported liquid extraction/in-situ derivatization coupled with high-performance liquid chromatography for conveniently determining three furfurals. Food Chem 2023; 415:135788. [PMID: 36854240 DOI: 10.1016/j.foodchem.2023.135788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
This study presents an in-pipette-tip kapok fiber-supported liquid extraction/in-situ derivatization (in-pipette-tip KF-SLE-ISD) method for simultaneous enrichment and derivatization of furfurals. Briefly, 3 mg of natural kapok fiber, which was loaded in an assembled pipette-tip, was used to support 12.5 μL of extractant (ethyl acetate/toluene, 75:25, v/v) containing 10 mM 2,4-dinitrophenylhydrazine. The in-pipette-tip KF-SLE-ISD procedure was conveniently conducted by aspirating/releasing 1 mL of sample solution 10 cycles, allowing simultaneous extraction and derivatization of furfurals. Then, 100 μL of acetonitrile was aspirated/released 5 cycles for elution, 10 μL of which was directly analyzed by high-performance liquid chromatography. The limits of quantitation were in ranges of 0.10-0.45 μg/mL. The method showed satisfied linearity (R2 > 0.99), precision (RSD < 8.53%) and relative recovery (90.34-114.71%), which was successfully applied to determine furfurals in various samples (e.g., honeys, juices and glucose injections). The proposed method has the merits of effectiveness, simplicity, low cost, wide availability and ease of automation.
Collapse
Affiliation(s)
- Di Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou 450001, China
| | - Xinmiao Bu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinli Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Wang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou 450001, China
| | - Manyu Zhang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou 450001, China
| | - Yumei Gan
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou 450001, China
| | - Hang Yuan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xu Xia
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou 450001, China.
| |
Collapse
|
6
|
Batubara AS, Abdelazim AH, Almrasy AA, Gamal M, Ramzy S. Quantitative analysis of two COVID-19 antiviral agents, favipiravir and remdesivir, in spiked human plasma using spectrophotometric methods; greenness evaluation. BMC Chem 2023; 17:58. [PMID: 37328879 DOI: 10.1186/s13065-023-00967-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/26/2023] [Indexed: 06/18/2023] Open
Abstract
Favipiravir and remdesivir have been included in the COVID-19 treatment guidelines panel of several countries. The main objective of the current work is to develop the first validated green spectrophotometric methods for the determination of favipiravir and remdesivir in spiked human plasma. The UV absorption spectra of favipiravir and remdesivir have shown some overlap, making simultaneous determination difficult. Due to the considerable overlap, two ratio spectra manipulating spectrophotometric methods, namely, ratio difference and the first derivative of ratio spectra, enabled the determination of favipiravir and remdesivir in their pure forms and spiked plasma. The ratio spectra of favipiravir and remdesivir were derived by dividing the spectra of each drug by the suitable spectrum of another drug as a divisor to get the ratio spectra. Favipiravir was determined by calculating the difference between 222 and 256 nm of the derived ratio spectra, while calculating the difference between 247 and 271 nm of the derived ratio spectra enabled the determination of remdesivir. Moreover, the ratio spectra of every drug were transformed to the first order derivative using ∆λ = 4 and a scaling factor of 100. The first-order derivative amplitude values at 228 and 251.20 nm enabled the determination of favipiravir and remdesivir, respectively. Regarding the pharmacokinetic profile of favipiravir (Cmax 4.43 µg/mL) and remdesivir (Cmax 3027 ng/mL), the proposed methods have been successfully applied to the spectrophotometric determination of favipiravir and remdesivir in plasma matrix. Additionally, the greenness of the described methods was evaluated using three metrics systems: the national environmental method index, the analytical eco-scale, and the analytical greenness metric. The results demonstrated that the described models were in accordance with the environmental characteristics.
Collapse
Affiliation(s)
- Afnan S Batubara
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ahmed H Abdelazim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt
| | - Ahmed A Almrasy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt
| | - Mohammed Gamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Sherif Ramzy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
| |
Collapse
|
7
|
Khalil HA, Hassanein NA, El-Yazbi AF. Recent analytical methodologies for the determination of anti-covid-19 drug therapies in various matrices: a critical review. RSC Adv 2023; 13:13224-13239. [PMID: 37124020 PMCID: PMC10143325 DOI: 10.1039/d3ra00654a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023] Open
Abstract
Since the discovery of the first case infected with severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) in Wuhan, China in December 2019, it has turned into a global pandemic. According to the World Health Organization (WHO) statistics, about 603.7 million confirmed coronavirus cases and 6.4 million deaths have been reported. Remdesivir (RMD) was the first U.S. Food and Drug Administration (FDA) approved antiviral drug for the treatment of coronavirus in pediatrics and adults with different disease severities, ranging from mild to severe, in both hospitalized and non-hospitalized patients. Various drug regimens are used in Covid-19 treatment, all of which rely on the use of antiviral agents including ritonavir (RTN)/nirmatrelvir (NTV) combination, molnupiravir (MLP) and favipiravir (FVP). Optimizing analytical methods for the selective and sensitive quantification of the above-mentioned drugs in pharmaceutical dosage forms and biological matrices is a must in the current pandemic. Several analytical techniques were reported for estimation of antivirals used in Covid-19 therapy. Chromatographic methods include Thin Layer Chromatography (TLC) densitometry, High Performance Thin Layer Chromatography (HPTLC), Reversed Phase-High Performance Liquid Chromatography (RP-HPLC), High Performance Liquid Chromatography Tandem Mass Spectrometry (HPLC-MS/MS) or Ultraviolet detectors (HPLC-UV), Ultra High-Performance Liquid Chromatography (UHPLC-MS/MS) or (UPLC-UV) and Micellar Liquid Chromatography (MLC). In addition to other spectroscopic methods including Paper Spray Mass Spectrometry (PS-MS), UV-Visible Spectrophotometry, and Spectrofluorimetry. Herein, we will focus on the clarification of trendy, simple, rapid, accurate, precise, sensitive, selective, and eco-friendly analytical methods used for the analysis of anti-Covid-19 drugs in dosage forms as well as biological matrices.
Collapse
Affiliation(s)
- Hadeel A Khalil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Alexandria P.O.Box: 21521, El-Messalah Alexandria 21521 Egypt
| | - Nermeen A Hassanein
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Alexandria P.O.Box: 21521, El-Messalah Alexandria 21521 Egypt
| | - Amira F El-Yazbi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Alexandria P.O.Box: 21521, El-Messalah Alexandria 21521 Egypt
| |
Collapse
|