1
|
Wang TF, Liou YS, Yang SH, Lin GL, Chiang YW, Lien TS, Li CC, Wang JH, Chang HH, Sun DS. Platelet-derived circulating soluble P-selectin is sufficient to induce hematopoietic stem cell mobilization. Stem Cell Res Ther 2023; 14:300. [PMID: 37864264 PMCID: PMC10589967 DOI: 10.1186/s13287-023-03527-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Granulocyte colony-stimulating factor (G-CSF)-mediated mobilization of hematopoietic stem cells (HSCs) is a well-established method to prepare HSCs for transplantation nowadays. A sufficient number of HSCs is critical for successful HSC transplantation. However, approximately 2-6% of healthy stem cell donors are G-CSF-poor mobilizers for unknown reasons; thus increasing the uncertainties of HSC transplantation. The mechanism underlining G-CSF-mediated HSC mobilization remains elusive, so detailed mechanisms and an enhanced HSC mobilization strategy are urgently needed. Evidence suggests that P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) are one of the cell-cell adhesion ligand-receptor pairs for HSCs to keep contacting bone marrow (BM) stromal cells before being mobilized into circulation. This study hypothesized that blockage of PSGL-1 and P-selectin may disrupt HSC-stromal cell interaction and facilitate HSC mobilization. METHODS The plasma levels of soluble P-selectin (sP-sel) before and after G-CSF administration in humans and male C57BL/6J mice were analyzed using enzyme-linked immunosorbent assay. Male mice with P-selectin deficiency (Selp-/-) were further employed to investigate whether P-selectin is essential for G-CSF-induced HSC mobilization and determine which cell lineage is sP-sel derived from. Finally, wild-type mice were injected with either G-CSF or recombinant sP-sel to investigate whether sP-sel alone is sufficient for inducing HSC mobilization and whether it accomplishes this by binding to HSCs and disrupting their interaction with stromal cells in the BM. RESULTS A significant increase in plasma sP-sel levels was observed in humans and mice following G-CSF administration. Treatments of G-CSF induced a decrease in the level of HSC mobilization in Selp-/- mice compared with the wild-type (Selp+/+) controls. Additionally, the transfer of platelets derived from wild-type mice can ameliorate the defected HSC mobilization in the Selp-/- recipients. G-CSF induces the release of sP-sel from platelets, which is sufficient to mobilize BM HSCs into the circulation of mice by disrupting the PSGL-1 and P-selectin interaction between HSCs and stromal cells. These results collectively suggested that P-selectin is a critical factor for G-CSF-induced HSC mobilization. CONCLUSIONS sP-sel was identified as a novel endogenous HSC-mobilizing agent. sP-sel injections achieved a relatively faster and more convenient regimen to mobilize HSCs in mice than G-CSF. These findings may serve as a reference for developing and optimizing human HSC mobilization in the future.
Collapse
Grants
- MOST103-2321-B-320-001 Ministry of Science and Technology, Taiwan
- MOST105-2633-B-320-001 Ministry of Science and Technology, Taiwan
- MOST106-2633-B-320-001 Ministry of Science and Technology, Taiwan
- MOST108-2311-B-320-001 Ministry of Science and Technology, Taiwan
- TCMMP104-06 Buddhist Tzu Chi Medical Foundation
- TCMMP108-04 Buddhist Tzu Chi Medical Foundation
- TCMMP111-01 Buddhist Tzu Chi Medical Foundation
- TCRD106-42 Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
- TCRD108-55 Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
- TCRD110-61 Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
- TCRD111-082 Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
- TCRD112-054 Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
- TCAS-112-02 Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
Collapse
Affiliation(s)
- Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan, Republic of China
- Buddhist Tzu Chi Stem Cells Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
| | - Yu-Shan Liou
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China
| | - Shang-Hsien Yang
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan, Republic of China
- Buddhist Tzu Chi Stem Cells Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
- Department of Pediatric Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
| | - Guan-Ling Lin
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
| | - Ya-Wen Chiang
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China
| | - Chi-Cheng Li
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
- Center of Stem Cell and Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
| | - Jen-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China.
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China.
| |
Collapse
|
2
|
Doan PL, Frei AC, Piryani SO, Szalewski N, Fan E, Himburg HA. Cord Blood-Derived Endothelial Progenitor Cells Promote In Vivo Regeneration of Human Hematopoietic Bone Marrow. Int J Radiat Oncol Biol Phys 2023; 116:1163-1174. [PMID: 36792018 PMCID: PMC11086728 DOI: 10.1016/j.ijrobp.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/10/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023]
Abstract
PURPOSE Victims of acute radiation exposure are susceptible to hematopoietic toxicity due to bone marrow damage and loss of mature blood elements. Here, we evaluated cord blood-derived endothelial progenitor cells (CB-EPCs) as a potential cellular therapy for mitigation of hematologic acute radiation syndrome. CB-EPCs express endothelial cell markers and maintain their growth characteristics beyond 10+ passages without diminishing their doubling capacity. Further, CB-EPCs can be cryopreserved in vapor-phase liquid nitrogen and easily recovered for propagation, making them an attractive nonimmunogenic cellular therapy for off-the-shelf use. Importantly, we show CB-EPCs have the capacity to potently expand adult human bone marrow hematopoietic progenitor cells both in vitro and in vivo. METHODS AND MATERIALS To demonstrate the role of CB-EPCs in promoting in vivo human immune reconstitution after irradiation, we employed a novel humanized mouse model established by transplant of CD34+ bone marrow cells from 9 unique adult organ donors into immunocompromised NSG-SGM3 mice. The response of the humanized immune system to ionizing irradiation was then tested by exposure to 1 Gy followed by subcutaneous treatment of CB-EPCs, Food and Drug Administration-approved growth factor pegfilgrastim (0.3 mg/kg), or saline. RESULTS At day 7, total human bone marrow was decreased by 80% in irradiated controls. However, treatment with either growth factor pegfilgrastim or CB-EPCs increased recovery of total human bone marrow by 2.5-fold compared with saline. Notably, CB-EPCs also increased recovery of both human CD34+ progenitors by 5-fold and colony-forming capacity by 3-fold versus saline. Additionally, CB-EPCs promoted recovery of endogenous bone marrow endothelial cells as observed by both increased vessel area and length compared with saline. CONCLUSIONS These findings indicate the feasibility of using humanized mice engrafted with adult bone marrow for radiation research and the development of CB-EPCs as an off-the-shelf cellular therapy for mitigation of hematologic acute radiation syndrome.
Collapse
Affiliation(s)
- Phuong L Doan
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy; Duke Cancer Institute, Duke University, Durham, North Carolina
| | | | - Sadhna O Piryani
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy
| | | | - Elizabeth Fan
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy
| | - Heather A Himburg
- Department of Radiation Oncology; Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
3
|
Sharma GP, Himburg HA. Organ-Specific Endothelial Dysfunction Following Total Body Irradiation Exposure. TOXICS 2022; 10:toxics10120747. [PMID: 36548580 PMCID: PMC9781710 DOI: 10.3390/toxics10120747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 05/14/2023]
Abstract
As the single cell lining of the heart and all blood vessels, the vascular endothelium serves a critical role in maintaining homeostasis via control of vascular tone, immune cell recruitment, and macromolecular transit. For victims of acute high-dose radiation exposure, damage to the vascular endothelium may exacerbate the pathogenesis of acute and delayed multi-organ radiation toxicities. While commonalities exist between radiation-induced endothelial dysfunction in radiosensitive organs, the vascular endothelium is known to be highly heterogeneous as it is required to serve tissue and organ specific roles. In keeping with its organ and tissue specific functionality, the molecular and cellular response of the endothelium to radiation injury varies by organ. Therefore, in the development of medical countermeasures for multi-organ injury, it is necessary to consider organ and tissue-specific endothelial responses to both injury and candidate mitigators. The purpose of this review is to summarize the pathogenesis of endothelial dysfunction following total or near total body irradiation exposure at the level of individual radiosensitive organs.
Collapse
Affiliation(s)
- Guru Prasad Sharma
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Heather A. Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: ; Tel.: +1-(414)-955-4676
| |
Collapse
|
4
|
Radiobiological Studies of Microvascular Damage through In Vitro Models: A Methodological Perspective. Cancers (Basel) 2021; 13:cancers13051182. [PMID: 33803333 PMCID: PMC7967181 DOI: 10.3390/cancers13051182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Ionizing radiation (IR) is used in radiotherapy as a treatment to destroy cancer. Such treatment also affects other tissues, resulting in the so-called normal tissue complications. Endothelial cells (ECs) composing the microvasculature have essential roles in the microenvironment's homeostasis (ME). Thus, detrimental effects induced by irradiation on ECs can influence both the tumor and healthy tissue. In-vitro models can be advantageous to study these phenomena. In this systematic review, we analyzed in-vitro models of ECs subjected to IR. We highlighted the critical issues involved in the production, irradiation, and analysis of such radiobiological in-vitro models to study microvascular endothelial cells damage. For each step, we analyzed common methodologies and critical points required to obtain a reliable model. We identified the generation of a 3D environment for model production and the inclusion of heterogeneous cell populations for a reliable ME recapitulation. Additionally, we highlighted how essential information on the irradiation scheme, crucial to correlate better observed in vitro effects to the clinical scenario, are often neglected in the analyzed studies, limiting the translation of achieved results.
Collapse
|
5
|
Khodamoradi E, Hoseini-Ghahfarokhi M, Amini P, Motevaseli E, Shabeeb D, Musa AE, Najafi M, Farhood B. Targets for protection and mitigation of radiation injury. Cell Mol Life Sci 2020; 77:3129-3159. [PMID: 32072238 PMCID: PMC11104832 DOI: 10.1007/s00018-020-03479-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
Protection of normal tissues against toxic effects of ionizing radiation is a critical issue in clinical and environmental radiobiology. Investigations in recent decades have suggested potential targets that are involved in the protection against radiation-induced damages to normal tissues and can be proposed for mitigation of radiation injury. Emerging evidences have been shown to be in contrast to an old dogma in radiation biology; a major amount of reactive oxygen species (ROS) production and cell toxicity occur during some hours to years after exposure to ionizing radiation. This can be attributed to upregulation of inflammatory and fibrosis mediators, epigenetic changes and disruption of the normal metabolism of oxygen. In the current review, we explain the cellular and molecular changes following exposure of normal tissues to ionizing radiation. Furthermore, we review potential targets that can be proposed for protection and mitigation of radiation toxicity.
Collapse
Affiliation(s)
- Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojtaba Hoseini-Ghahfarokhi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
- Misan Radiotherapy Center, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Siberchicot C, Gault N, Déchamps N, Barroca V, Aguzzi A, Roméo PH, Radicella JP, Bravard A, Bernardino-Sgherri J. Prion protein deficiency impairs hematopoietic stem cell determination and sensitizes myeloid progenitors to irradiation. Haematologica 2019; 105:1216-1222. [PMID: 31371412 PMCID: PMC7193476 DOI: 10.3324/haematol.2018.205716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
Highly conserved among species and expressed in various types of cells, numerous roles have been attributed to the cellular prion protein (PrPC). In hematopoiesis, PrPC regulates hematopoietic stem cell self-renewal but the mechanisms involved in this regulation are unknown. Here we show that PrPC regulates hematopoietic stem cell number during aging and their determination towards myeloid progenitors. Furthermore, PrPC protects myeloid progenitors against the cytotoxic effects of total body irradiation. This radioprotective effect was associated with increased cellular prion mRNA level and with stimulation of the DNA repair activity of the Apurinic/pyrimidinic endonuclease 1, a key enzyme of the base excision repair pathway. Altogether, these results show a previously unappreciated role of PrPC in adult hematopoiesis, and indicate that PrPC-mediated stimulation of BER activity might protect hematopoietic progenitors from the cytotoxic effects of total body irradiation.
Collapse
Affiliation(s)
- Capucine Siberchicot
- French Alternative Energies and Atomic Energy Commission (CEA)/Direction of Fundamental Research (DRF)/Institute of Biology François Jacob (IBFJ)/Institute of Cellular and Molecular Radiobiology (iRCM), 92265 Fontenay-aux-Roses Cedex, France.,Laboratory of Research in Genetic Instability (LRIG), 92265 Fontenay-aux-Roses Cedex, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris-Sud, Paris, France
| | - Nathalie Gault
- French Alternative Energies and Atomic Energy Commission (CEA)/Direction of Fundamental Research (DRF)/Institute of Biology François Jacob (IBFJ)/Institute of Cellular and Molecular Radiobiology (iRCM), 92265 Fontenay-aux-Roses Cedex, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris-Sud, Paris, France.,Laboratory of Repair and Transcription in Hematopoietic Stem Cells (LRTS), 92265 Fontenay-aux-Roses Cedex, France.,Inserm U967, 92265 Fontenay-aux-Roses Cedex, France
| | - Nathalie Déchamps
- French Alternative Energies and Atomic Energy Commission (CEA)/Direction of Fundamental Research (DRF)/Institute of Biology François Jacob (IBFJ)/Institute of Cellular and Molecular Radiobiology (iRCM), 92265 Fontenay-aux-Roses Cedex, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris-Sud, Paris, France.,Inserm U967, 92265 Fontenay-aux-Roses Cedex, France
| | - Vilma Barroca
- French Alternative Energies and Atomic Energy Commission (CEA)/Direction of Fundamental Research (DRF)/Institute of Biology François Jacob (IBFJ)/Institute of Cellular and Molecular Radiobiology (iRCM), 92265 Fontenay-aux-Roses Cedex, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris-Sud, Paris, France.,Laboratory of Repair and Transcription in Hematopoietic Stem Cells (LRTS), 92265 Fontenay-aux-Roses Cedex, France.,Inserm U967, 92265 Fontenay-aux-Roses Cedex, France
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Paul-Henri Roméo
- French Alternative Energies and Atomic Energy Commission (CEA)/Direction of Fundamental Research (DRF)/Institute of Biology François Jacob (IBFJ)/Institute of Cellular and Molecular Radiobiology (iRCM), 92265 Fontenay-aux-Roses Cedex, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris-Sud, Paris, France.,Laboratory of Repair and Transcription in Hematopoietic Stem Cells (LRTS), 92265 Fontenay-aux-Roses Cedex, France.,Inserm U967, 92265 Fontenay-aux-Roses Cedex, France
| | - J Pablo Radicella
- French Alternative Energies and Atomic Energy Commission (CEA)/Direction of Fundamental Research (DRF)/Institute of Biology François Jacob (IBFJ)/Institute of Cellular and Molecular Radiobiology (iRCM), 92265 Fontenay-aux-Roses Cedex, France.,Laboratory of Research in Genetic Instability (LRIG), 92265 Fontenay-aux-Roses Cedex, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris-Sud, Paris, France
| | - Anne Bravard
- French Alternative Energies and Atomic Energy Commission (CEA)/Direction of Fundamental Research (DRF)/Institute of Biology François Jacob (IBFJ)/Institute of Cellular and Molecular Radiobiology (iRCM), 92265 Fontenay-aux-Roses Cedex, France .,Laboratory of Research in Genetic Instability (LRIG), 92265 Fontenay-aux-Roses Cedex, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris-Sud, Paris, France.,Laboratory of Repair and Transcription in Hematopoietic Stem Cells (LRTS), 92265 Fontenay-aux-Roses Cedex, France.,Inserm U967, 92265 Fontenay-aux-Roses Cedex, France
| | - Jacqueline Bernardino-Sgherri
- French Alternative Energies and Atomic Energy Commission (CEA)/Direction of Fundamental Research (DRF)/Institute of Biology François Jacob (IBFJ)/Institute of Cellular and Molecular Radiobiology (iRCM), 92265 Fontenay-aux-Roses Cedex, France .,Laboratory of Research in Genetic Instability (LRIG), 92265 Fontenay-aux-Roses Cedex, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris-Sud, Paris, France.,Laboratory of Repair and Transcription in Hematopoietic Stem Cells (LRTS), 92265 Fontenay-aux-Roses Cedex, France.,Inserm U967, 92265 Fontenay-aux-Roses Cedex, France
| |
Collapse
|
7
|
Kim MM, Schlussel L, Zhao L, Himburg HA. Dickkopf-1 Treatment Stimulates Hematopoietic Regenerative Function in Infused Endothelial Progenitor Cells. Radiat Res 2019; 192:53-62. [PMID: 31081743 DOI: 10.1667/rr15361.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Acute high-dose radiation injury damages the bone marrow hematopoietic stem and progenitor cell compartment. This damage compromises the functional ability of the bone marrow to produce mature blood cells and results in an increased risk of death due to hematopoietic complications. Past work has shown that the bone marrow endothelium provides critical cues, which promote hematopoietic stem cell regeneration after injury. Additionally, transfusion of endothelial cells after radiation injury has been shown to promote recovery of both the bone marrow vasculature and hematopoietic systems. In this work, we examined the regenerative capacity of intravenous infusion of umbilical cord-blood derived endothelial progenitor cells (EPCs) since this is a cell source which is easy to obtain, expand and cryopreserve. We show that pre-treatment with the Wnt-antagonist Dickkopf1 (Dkk1) augments EPC regenerative function in an allogeneic mouse transplant model. Here, hematopoietic recovery was assessed in Balb/c mice after 5 Gy total-body irradiation and transplantation with C57/BL6-derived EPCs either with or without Dkk1 pre-treatment. The Dkk1-treated EPC group had significantly faster recovery of peripheral white blood cells, total bone marrow cellularity, bone marrow progenitors and BM endothelial cells compared to EPC treatment alone or saline controls. Importantly, after an LD50/30 dose of 8 Gy in the Balb/c mouse, Dkk1-treated EPCs were able to rescue 100% of irradiated mice versus 80% in the EPC control group and only 33% in the saline-treated group. To understand how Dkk1 induces regenerative function in the EPCs, we screened for pro-regenerative factors secreted by the EPC in response to Dkk1. Dkk1-treated EPCs were observed to secrete high levels of the anti-fibrotic protein follistatin as well as several proteins known to promote regeneration including EGF, VEGF and G-CSF. This work demonstrates the potential for Dkk1-treated EPCs as a rescue therapeutic for victims of acute radiation injury.
Collapse
Affiliation(s)
- Mindy M Kim
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Lauren Schlussel
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Liman Zhao
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Heather A Himburg
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| |
Collapse
|
8
|
Piryani SO, Jiao Y, Kam AYF, Liu Y, Vo-Dinh T, Chen BJ, Chao NJ, Doan PL. Endothelial Cell-Derived Extracellular Vesicles Mitigate Radiation-Induced Hematopoietic Injury. Int J Radiat Oncol Biol Phys 2019; 104:291-301. [PMID: 30763662 DOI: 10.1016/j.ijrobp.2019.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/29/2018] [Accepted: 02/04/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE Extracellular vesicles (EVs) are shed vesicles that bear a combination of nucleic acids and proteins. EVs are becoming recognized as a mode of cell-to-cell communication. Because hematopoietic stem cells reside in proximity to endothelial cells (ECs), we investigated whether EC-derived EVs could regulate hematopoietic stem cell regeneration after ionizing radiation. METHODS AND MATERIALS We generated EVs derived from primary murine marrow ECs. We sought to determine the response of irradiated hematopoietic stem and progenitor cells to syngeneic or allogeneic EVs in culture assays. Starting 24 hours after either sublethal or lethal irradiation, mice were treated with EVs or saline or cultured primary marrow endothelial cells to determine the hematopoietic response in vivo. RESULTS We demonstrate that EVs bear nuclear material and express EC-specific markers. Treatment with EVs promoted cell expansion and increased the number of colony-forming units compared to irradiated, hematopoietic cell cultures treated with cytokines alone. After total body irradiation, EV-treated mice displayed preserved marrow cellularity, marrow vessel integrity, and prolonged overall survival compared with controls treated with saline. Treatment of irradiated hematopoietic stem/progenitor cells (HSPCs) with EVs from different genetic strains showed results similar to treatment of HSPCs from syngeneic EVs. Mechanistically, treatment of irradiated HSPCs with EVs resulted in decreased levels of annexin V+ apoptotic cell death, which is mediated in part by tissue inhibitor of metalloproteinase-1. CONCLUSIONS Our findings show that syngeneic or allogeneic EVs could serve as cell-derived therapy to deliver physiologic doses of nucleic acids and growth factors to hematopoietic cells to accelerate hematopoietic regeneration.
Collapse
Affiliation(s)
- Sadhna O Piryani
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina
| | - Yiqun Jiao
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina
| | - Angel Y F Kam
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina
| | - Yang Liu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina; Department of Biomedical Engineering Chemistry, Duke University, Durham, North Carolina
| | - Tuan Vo-Dinh
- Department of Biomedical Engineering, Duke University, Durham, North Carolina; Department of Biomedical Engineering Chemistry, Duke University, Durham, North Carolina
| | - Benny J Chen
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina; Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Nelson J Chao
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina; Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Phuong L Doan
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina; Duke Cancer Institute, Duke University, Durham, North Carolina.
| |
Collapse
|
9
|
Aanei CM, Catafal LC. Evaluation of bone marrow microenvironment could change how myelodysplastic syndromes are diagnosed and treated. Cytometry A 2018; 93:916-928. [PMID: 30211968 DOI: 10.1002/cyto.a.23506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/06/2018] [Accepted: 05/17/2018] [Indexed: 12/13/2022]
Abstract
Myelodysplastic syndromes are a heterogeneous group of clonal hematopoietic disorders. However, the therapies used against the hematopoietic stem cells clones have limited efficacy; they slow the evolution toward acute myeloid leukemia rather than stop clonal evolution and eradicate the disease. The progress made in recent years regarding the role of the bone marrow microenvironment in disease evolution may contribute to progress in this area. This review presents the recent updates on the role of the bone marrow microenvironment in myelodysplastic syndromes pathogenesis and tries to find answers regarding how this information could improve myelodysplastic syndromes diagnosis and therapy.
Collapse
Affiliation(s)
- Carmen Mariana Aanei
- Laboratoire d'Hématologie, CHU de Saint-Etienne, 42055 Saint-Etienne Cedex 2, France
| | - Lydia Campos Catafal
- Laboratoire d'Hématologie, CHU de Saint-Etienne, 42055 Saint-Etienne Cedex 2, France
| |
Collapse
|
10
|
Janghorban M, Langer EM, Wang X, Zachman D, Daniel CJ, Hooper J, Fleming WH, Agarwal A, Sears RC. The tumor suppressor phosphatase PP2A-B56α regulates stemness and promotes the initiation of malignancies in a novel murine model. PLoS One 2017; 12:e0188910. [PMID: 29190822 PMCID: PMC5708644 DOI: 10.1371/journal.pone.0188910] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/15/2017] [Indexed: 01/13/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is a ubiquitously expressed Serine-Threonine phosphatase mediating 30–50% of protein phosphatase activity. PP2A functions as a heterotrimeric complex, with the B subunits directing target specificity to regulate the activity of many key pathways that control cellular phenotypes. PP2A-B56α has been shown to play a tumor suppressor role and to negatively control c-MYC stability and activity. Loss of B56α promotes cellular transformation, likely at least in part through its regulation of c-MYC. Here we report generation of a B56α hypomorph mouse with very low B56α expression that we used to study the physiologic activity of the PP2A-B56α phosphatase. The predominant phenotype we observed in mice with B56α deficiency in the whole body was spontaneous skin lesion formation with hyperproliferation of the epidermis, hair follicles and sebaceous glands. Increased levels of c-MYC phosphorylation on Serine62 and c-MYC activity were observed in the skin lesions of the B56αhm/hm mice. B56α deficiency was found to increase the number of skin stem cells, and consistent with this, papilloma initiation was accelerated in a carcinogenesis model. Further analysis of additional tissues revealed increased inflammation in spleen, liver, lung, and intestinal lymph nodes as well as in the skin lesions, resembling elevated extramedullary hematopoiesis phenotypes in the B56αhm/hm mice. We also observed an increase in the clonogenicity of bone marrow stem cells in B56αhm/hm mice. Overall, this model suggests that B56α is important for stem cells to maintain homeostasis and that B56α loss leading to increased activity of important oncogenes, including c-MYC, can result in aberrant cell growth and increased stem cells that can contribute to the initiation of malignancy.
Collapse
Affiliation(s)
- Mahnaz Janghorban
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Ellen M. Langer
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Xiaoyan Wang
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Derek Zachman
- Papé Family Pediatric Research Institute, Oregon Stem Cell Center, Department of Pediatrics, Portland, Oregon, United States of America
| | - Colin J. Daniel
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jody Hooper
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William H. Fleming
- Papé Family Pediatric Research Institute, Oregon Stem Cell Center, Department of Pediatrics, Portland, Oregon, United States of America
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Rosalie C. Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
11
|
Piryani SO, Kam AYF, Kliassov EG, Chen BJ, Spector NL, Chute JP, Hsu DS, Chao NJ, Doan PL. Epidermal Growth Factor and Granulocyte Colony Stimulating Factor Signaling Are Synergistic for Hematopoietic Regeneration. Stem Cells 2017; 36:252-264. [PMID: 29086459 DOI: 10.1002/stem.2731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/05/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022]
Abstract
Hematopoietic regeneration following chemotherapy may be distinct from regeneration following radiation. While we have shown that epidermal growth factor (EGF) accelerates regeneration following radiation, its role following chemotherapy is currently unknown. We sought to identify EGF as a hematopoietic growth factor for chemotherapy-induced myelosuppression. Following 5-fluorouracil (5-FU), EGF accelerated hematopoietic stem cell regeneration and prolonged survival compared with saline-treated mice. To mitigate chemotherapy-induced injury to endothelial cells in vivo, we deleted Bax in VEcadherin+ cells (VEcadherinCre;BaxFL/FL mice). Following 5-FU, VEcadherinCre;BaxFL/FL mice displayed preserved hematopoietic stem/progenitor content compared with littermate controls. 5-FU and EGF treatment resulted in increased cellular proliferation, decreased apoptosis, and increased DNA double-strand break repair by non-homologous end-joining recombination compared with saline-treated control mice. When granulocyte colony stimulating factor (G-CSF) is given with EGF, this combination was synergistic for regeneration compared with either G-CSF or EGF alone. EGF increased G-CSF receptor (G-CSFR) expression following 5-FU. Conversely, G-CSF treatment increased both EGF receptor (EGFR) and phosphorylation of EGFR in hematopoietic stem/progenitor cells. In humans, the expression of EGFR is increased in patients with colorectal cancer treated with 5-FU compared with cancer patients not on 5-FU. Similarly, EGFR signaling is responsive to G-CSF in humans in vivo with both increased EGFR and phospho-EGFR in healthy human donors following G-CSF treatment compared with donors who did not receive G-CSF. These data identify EGF as a hematopoietic growth factor following myelosuppressive chemotherapy and that dual therapy with EGF and G-CSF may be an effective method to accelerate hematopoietic regeneration. Stem Cells 2018;36:252-264.
Collapse
Affiliation(s)
- Sadhna O Piryani
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina, USA
| | - Angel Y F Kam
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina, USA
| | - Evelyna G Kliassov
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina, USA
| | - Benny J Chen
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina, USA.,Duke Cancer Institute, Duke University, Durham, North Carolina, USA
| | - Neil L Spector
- Duke Cancer Institute, Duke University, Durham, North Carolina, USA.,Division of Medical Oncology, Duke University, Durham, North Carolina, USA
| | - John P Chute
- Division of Medical Oncology, University of California, Los Angeles, Los Angeles, California, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| | - David S Hsu
- Duke Cancer Institute, Duke University, Durham, North Carolina, USA.,Division of Medical Oncology, Duke University, Durham, North Carolina, USA
| | - Nelson J Chao
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina, USA.,Duke Cancer Institute, Duke University, Durham, North Carolina, USA
| | - Phuong L Doan
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina, USA.,Duke Cancer Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
12
|
Chen JJ, Gao XT, Yang L, Fu W, Liang L, Li JC, Hu B, Sun ZJ, Huang SY, Zhang YZ, Liang YM, Qin HY, Han H. Disruption of Notch signaling aggravates irradiation-induced bone marrow injury, which is ameliorated by a soluble Dll1 ligand through Csf2rb2 upregulation. Sci Rep 2016; 6:26003. [PMID: 27188577 PMCID: PMC4870557 DOI: 10.1038/srep26003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/25/2016] [Indexed: 01/12/2023] Open
Abstract
Physical and chemical insult-induced bone marrow (BM) damage often leads to lethality resulting from the depletion of hematopoietic stem and progenitor cells (HSPCs) and/or a deteriorated BM stroma. Notch signaling plays an important role in hematopoiesis, but whether it is involved in BM damage remains unclear. In this study, we found that conditional disruption of RBP-J, the transcription factor of canonical Notch signaling, increased irradiation sensitivity in mice. Activation of Notch signaling with the endothelial cell (EC)-targeted soluble Dll1 Notch ligand mD1R promoted BM recovery after irradiation. mD1R treatment resulted in a significant increase in myeloid progenitors and monocytes in the BM, spleen and peripheral blood after irradiation. mD1R also enhanced hematopoiesis in mice treated with cyclophosphamide, a chemotherapeutic drug that induces BM suppression. Mechanistically, mD1R increased the proliferation and reduced the apoptosis of myeloid cells in the BM after irradiation. The β chain cytokine receptor Csf2rb2 was identified as a downstream molecule of Notch signaling in hematopoietic cells. mD1R improved hematopoietic recovery through up-regulation of the hematopoietic expression of Csf2rb2. Our findings reveal the role of Notch signaling in irradiation- and drug-induced BM suppression and establish a new potential therapy of BM- and myelo-suppression induced by radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Juan-Juan Chen
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.,Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao-Tong Gao
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.,Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Lan Yang
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Fu
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.,Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Liang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Jun-Chang Li
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Bin Hu
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Zhi-Jian Sun
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Si-Yong Huang
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yi-Zhe Zhang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ying-Min Liang
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Hong-Yan Qin
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Hua Han
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.,Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
13
|
Rafii S, Butler JM, Ding BS. Angiocrine functions of organ-specific endothelial cells. Nature 2016; 529:316-25. [PMID: 26791722 DOI: 10.1038/nature17040] [Citation(s) in RCA: 659] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 11/26/2015] [Indexed: 12/13/2022]
Abstract
Endothelial cells that line capillaries are not just passive conduits for delivering blood. Tissue-specific endothelium establishes specialized vascular niches that deploy sets of growth factors, known as angiocrine factors. These cues participate actively in the induction, specification, patterning and guidance of organ regeneration, as well as in the maintainance of homeostasis and metabolism. When upregulated following injury, they orchestrate self-renewal and differentiation of tissue-specific resident stem and progenitor cells into functional organs. Uncovering the mechanisms by which organotypic endothelium distributes physiological levels of angiocrine factors both spatially and temporally will lay the foundation for clinical trials that promote organ repair without scarring.
Collapse
Affiliation(s)
- Shahin Rafii
- Ansary Stem Cell Institute, Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, USA
| | - Jason M Butler
- Ansary Stem Cell Institute, Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, USA
| | - Bi-Sen Ding
- Ansary Stem Cell Institute, Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, USA
| |
Collapse
|