1
|
Sajeev A, BharathwajChetty B, Manickasamy MK, Alqahtani MS, Abbas M, Shakibaei M, Sethi G, Ma Z, Kunnumakkara AB. Nuclear receptors in ovarian cancer: changing paradigms in cancer therapeutics. Front Oncol 2024; 14:1383939. [PMID: 39077471 PMCID: PMC11284039 DOI: 10.3389/fonc.2024.1383939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/31/2024] [Indexed: 07/31/2024] Open
Abstract
Ovarian cancer (OVC) is one of the most common causes of cancer-related deaths in women worldwide. Despite advancements in detection and therapy, the prognosis of OVC remains poor due to late diagnosis and the lack of effective therapeutic options at advanced stages. Therefore, a better understanding of the biology underlying OVC is essential for the development of effective strategies for early detection and targeted therapies. Nuclear receptors (NRs) are a superfamily of 48 transcription factors that, upon binding to their specific ligand, play a vital role in regulating various cellular processes such as growth, development, metabolism, and homeostasis. Accumulating evidence from several studies has shown that their aberrant expression is associated with multiple human diseases. Numerous NRs have shown significant effects in the development of various cancers, including OVC. This review summarizes the recent findings on the role of NRs in OVC, as well as their potential as prognostic and therapeutic markers. Further, the basic structure and signaling mechanism of NRs have also been discussed briefly. Moreover, this review highlights their cellular and molecular mechanisms in chemoresistance and chemosensitization. Further, the clinical trials targeting NRs for the treatment of OVC have also been discussed.
Collapse
Affiliation(s)
- Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| | - Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University of Singapore (NUS) Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| |
Collapse
|
2
|
Wartalski K, Wiater J, Maciak P, Pastuła A, Lis GJ, Samiec M, Trzcińska M, Duda M. Anabolic Steroids Activate the NF-κB Pathway in Porcine Ovarian Putative Stem Cells Independently of the ZIP-9 Receptor. Int J Mol Sci 2024; 25:2833. [PMID: 38474077 DOI: 10.3390/ijms25052833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/13/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Boldenone (Bdn) and nandrolone (Ndn) are anabolic androgenic steroids (AASs) that, as our previous studies have shown, may increase the risk of neoplastic transformation of porcine ovarian putative stem cells (poPSCs). The NF-κB pathway may be important in the processes of carcinogenesis and tumour progression. Therefore, in this work, we decided to test the hypothesis of whether Bdn and Ndn can activate the NF-κB pathway by acting through the membrane androgen receptor ZIP-9. For this purpose, the expression profiles of both genes involved in the NF-κB pathway and the gene coding for the ZIP-9 receptor were checked. The expression and localization of proteins of this pathway in poPSCs were also examined. Additionally, the expression of the ZIP-9 receptor and the concentration of the NF-κB1 and 2 protein complex were determined. Activation of the NF-κB pathway was primarily confirmed by an increase in the relative abundances of phosphorylated forms of RelA protein and IκBα inhibitor. Reduced quantitative profiles pinpointed not only for genes representing this pathway but also for unphosphorylated proteins, and, simultaneously, decreased concentration of the NF-κB1 and 2 complex may indicate post-activation silencing by negative feedback. However, the remarkably and sustainably diminished expression levels noticed for the SLC39A9 gene and ZIP-9 protein suggest that this receptor does not play an important role in the regulation of the NF-κB pathway.
Collapse
Affiliation(s)
- Kamil Wartalski
- Department of Histology, Jagiellonian University Medical College, Kopernika 7 Street, 31-034 Krakow, Poland
| | - Jerzy Wiater
- Department of Histology, Jagiellonian University Medical College, Kopernika 7 Street, 31-034 Krakow, Poland
| | - Patrycja Maciak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland
| | - Agnieszka Pastuła
- Department of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland
| | - Grzegorz J Lis
- Department of Histology, Jagiellonian University Medical College, Kopernika 7 Street, 31-034 Krakow, Poland
| | - Marcin Samiec
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice, Poland
| | - Monika Trzcińska
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice, Poland
| | - Małgorzata Duda
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland
| |
Collapse
|
3
|
Alam S, Giri PK. Novel players in the development of chemoresistance in ovarian cancer: ovarian cancer stem cells, non-coding RNA and nuclear receptors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:6. [PMID: 38434767 PMCID: PMC10905178 DOI: 10.20517/cdr.2023.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Ovarian cancer (OC) ranks as the fifth leading factor for female mortality globally, with a substantial burden of new cases and mortality recorded annually. Survival rates vary significantly based on the stage of diagnosis, with advanced stages posing significant challenges to treatment. OC is primarily categorized as epithelial, constituting approximately 90% of cases, and correct staging is essential for tailored treatment. The debulking followed by chemotherapy is the prevailing treatment, involving platinum-based drugs in combination with taxanes. However, the efficacy of chemotherapy is hindered by the development of chemoresistance, both acquired during treatment (acquired chemoresistance) and intrinsic to the patient (intrinsic chemoresistance). The emergence of chemoresistance leads to increased mortality rates, with many advanced patients experiencing disease relapse shortly after initial treatment. This review delves into the multifactorial nature of chemoresistance in OC, addressing mechanisms involving transport systems, apoptosis, DNA repair, and ovarian cancer stem cells (OCSCs). While previous research has identified genes associated with these mechanisms, the regulatory roles of non-coding RNA (ncRNA) and nuclear receptors in modulating gene expression to confer chemoresistance have remained poorly understood and underexplored. This comprehensive review aims to shed light on the genes linked to different chemoresistance mechanisms in OC and their intricate regulation by ncRNA and nuclear receptors. Specifically, we examine how these molecular players influence the chemoresistance mechanism. By exploring the interplay between these factors and gene expression regulation, this review seeks to provide a comprehensive mechanism driving chemoresistance in OC.
Collapse
Affiliation(s)
| | - Pankaj Kumar Giri
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| |
Collapse
|
4
|
Quintero JC, Díaz NF, Rodríguez-Dorantes M, Camacho-Arroyo I. Cancer Stem Cells and Androgen Receptor Signaling: Partners in Disease Progression. Int J Mol Sci 2023; 24:15085. [PMID: 37894767 PMCID: PMC10606328 DOI: 10.3390/ijms242015085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer stem cells exhibit self-renewal, tumorigenesis, and a high differentiation potential. These cells have been detected in every type of cancer, and different signaling pathways can regulate their maintenance and proliferation. Androgen receptor signaling plays a relevant role in the pathophysiology of prostate cancer, promoting cell growth and differentiation processes. However, in the case of prostate cancer stem cells, the androgen receptor negatively regulates their maintenance and self-renewal. On the other hand, there is evidence that androgen receptor activity positively regulates the generation of cancer stem cells in other types of neoplasia, such as breast cancer or glioblastoma. Thus, the androgen receptor role in cancer stem cells depends on the cellular context. We aimed to analyze androgen receptor signaling in the maintenance and self-renewal of different types of cancer stem cells and its action on the expression of transcription factors and surface markers associated with stemness.
Collapse
Affiliation(s)
- Juan Carlos Quintero
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico;
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Mexico City 11000, Mexico;
| | | | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico;
| |
Collapse
|
5
|
A Novel 3D Culture Scaffold to Shorten Development Time for Multicellular Tumor Spheroids. Int J Mol Sci 2022; 23:ijms232213962. [PMID: 36430445 PMCID: PMC9699299 DOI: 10.3390/ijms232213962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Multicellular tumor spheroids and tumoroids are considered ideal in vitro models that reflect the features of the tumor microenvironment. Biomimetic components resembling the extracellular matrix form scaffolds to provide structure to 3-dimensional (3D) culture systems, supporting the growth of both spheroids and tumoroids. Although Matrigel has long been used to support 3D culture systems, batch variations, component complexity, and the use of components derived from tumors are complicating factors. To address these issues, we developed the ACD 3D culture system to provide better control and consistency. We evaluated spheroid and tumoroid formation using the ACD 3D culture system, including the assessment of cell viability and cancer marker expression. Under ACD 3D culture conditions, spheroids derived from cancer cell lines exhibited cancer stem cell characteristics, including a sphere-forming size and the expression of stem cell marker genes. The ACD 3D culture system was also able to support patient-derived primary cells and organoid cell cultures, displaying adequate cell growth, appropriate morphology, and resistance to oxaliplatin treatment. These spheroids could also be used for drug screening purposes. In conclusion, the ACD 3D culture system represents an efficient tool for basic cancer research and therapeutic development.
Collapse
|
6
|
Molecular Regulation of Androgen Receptors in Major Female Reproductive System Cancers. Int J Mol Sci 2022; 23:ijms23147556. [PMID: 35886904 PMCID: PMC9322163 DOI: 10.3390/ijms23147556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
There are three main types of cancer in the female reproductive system, specifically ovarian cancer (OVCA), endometrial cancer (EC), and cervical cancer (CC). They are common malignant tumors in women worldwide, with high morbidity and mortality. In recent years, androgen receptors (ARs) have been found to be closely related to the occurrence, progression, prognosis, and drug resistance of these three types of tumors. This paper summarizes current views on the role of AR in female reproductive system cancer, the associations between female reproductive system cancers and AR expression and polymorphisms. AR regulates the downstream target genes transcriptional activity and the expression via interacting with coactivators/corepressors and upstream/downstream regulators and through the gene transcription mechanism of “classical A/AR signaling” or “non-classical AR signaling”, involving a large number of regulatory factors and signaling pathways. ARs take part in the processes of cancer cell proliferation, migration/invasion, cancer cell stemness, and chemotherapeutic drug resistance. These findings suggest that the AR and related regulators could target the treatment of female reproductive system cancer.
Collapse
|
7
|
Gorczyca G, Wartalski K, Wiater J, Samiec M, Tabarowski Z, Duda M. Anabolic Steroids-Driven Regulation of Porcine Ovarian Putative Stem Cells Favors the Onset of Their Neoplastic Transformation. Int J Mol Sci 2021; 22:ijms222111800. [PMID: 34769230 PMCID: PMC8583785 DOI: 10.3390/ijms222111800] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Nandrolone (Ndn) and boldenone (Bdn), the synthetic testosterone analogues with strong anabolic effects, despite being recognized as potentially carcinogenic compounds, are commonly abused by athletes and bodybuilders, which includes women, worldwide. This study tested the hypothesis that different doses of Ndn and Bdn can initiate neoplastic transformation of porcine ovarian putative stem cells (poPSCs). Immunomagnetically isolated poPSCs were expanded ex vivo in the presence of Ndn or Bdn, for 7 and 14 days. Results show that pharmacological doses of both Ndn and Bdn, already after 7 days of poPSCs culture, caused a significant increase of selected, stemness-related markers of cancer cells: CD44 and CD133. Notably, Ndn also negatively affected poPSCs growth not only by suppressing their proliferation and mitochondrial respiration but also by inducing apoptosis. This observation shows, for the first time, that chronic exposure to Ndn or Bdn represents a precondition that might enhance risk of poPSCs neoplastic transformation. These studies carried out to accomplish detailed molecular characterization of the ex vivo expanded poPSCs and their potentially cancerous derivatives (PCDs) might be helpful to determine their suitability as nuclear donor cells (NDCs) for further investigations focused on cloning by somatic cell nuclear transfer (SCNT). Such investigations might also be indispensable to estimate the capabilities of nuclear genomes inherited from poPSCs and their PCDs to be epigenetically reprogrammed (dedifferentiated) in cloned pig embryos generated by SCNT. This might open up new possibilities for biomedical research aimed at more comprehensively recognizing genetic and epigenetic mechanisms underlying not only tumorigenesis but also reversal/retardation of pro-tumorigenic intracellular events.
Collapse
Affiliation(s)
- Gabriela Gorczyca
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland;
| | - Kamil Wartalski
- Department of Histology, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7 Street, 31-034 Krakow, Poland; (K.W.); (J.W.)
| | - Jerzy Wiater
- Department of Histology, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7 Street, 31-034 Krakow, Poland; (K.W.); (J.W.)
| | - Marcin Samiec
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice near Kraków, Poland
- Correspondence: (M.S.); (M.D.)
| | - Zbigniew Tabarowski
- Department of Experimental Hematology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland;
| | - Małgorzata Duda
- Department of Endocrinology, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland;
- Correspondence: (M.S.); (M.D.)
| |
Collapse
|
8
|
Androgen/Androgen Receptor Signaling in Ovarian Cancer: Molecular Regulation and Therapeutic Potentials. Int J Mol Sci 2021; 22:ijms22147748. [PMID: 34299364 PMCID: PMC8304547 DOI: 10.3390/ijms22147748] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer (OVCA) arises from three cellular origins, namely surface epithelial cells, germ cells, and stromal cells. More than 85% of OVCAs are EOCs (epithelial ovarian carcinomas), which are the most lethal gynecological malignancies. Cancer stem/progenitor cells (CSPCs) are considered to be cancer promoters due to their capacity for unlimited self-renewal and drug resistance. Androgen receptor (AR) belongs to the nuclear receptor superfamily and can be activated through binding to its ligand androgens. Studies have reported an association between AR expression and EOC carcinogenesis, and AR is suggested to be involved in proliferation, migration/invasion, and stemness. In addition, alternative AR activating signals, including both ligand-dependent and ligand-independent, are involved in OVCA progression. Although some clinical trials have previously been conducted to evaluate the effects of anti-androgens in EOC, no significant results have been reported. In contrast, experimental studies evaluating the effects of anti-androgen or anti-AR reagents in AR-expressing EOC models have demonstrated positive results for suppressing disease progression. Since AR is involved in complex signaling pathways and may be expressed at various levels in OVCA, the aim of this article was to provide an overview of current studies and perspectives regarding the relevance of androgen/AR roles in OVCA.
Collapse
|
9
|
Chia K, Milioli H, Portman N, Laven-Law G, Coulson R, Yong A, Segara D, Parker A, Caldon CE, Deng N, Swarbrick A, Tilley WD, Hickey TE, Lim E. Non-canonical AR activity facilitates endocrine resistance in breast cancer. Endocr Relat Cancer 2019; 26:251-264. [PMID: 30557851 DOI: 10.1530/erc-18-0333] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 11/27/2018] [Indexed: 01/01/2023]
Abstract
The role of androgen receptor (AR) in endocrine-resistant breast cancer is controversial and clinical trials targeting AR with an AR antagonist (e.g., enzalutamide) have been initiated. Here, we investigated the consequence of AR antagonism using in vitro and in vivo models of endocrine resistance. AR antagonism in MCF7-derived tamoxifen-resistant (TamR) and long-term estrogen-deprived breast cancer cell lines were achieved using siRNA-mediated knockdown or pharmacological inhibition with enzalutamide. The efficacy of enzalutamide was further assessed in vivo in an estrogen-independent endocrine-resistant patient-derived xenograft (PDX) model. Knockdown of AR inhibited the growth of the endocrine-resistant cell line models. Microarray gene expression profiling of the TamR cells following AR knockdown revealed perturbations in proliferative signaling pathways upregulated in endocrine resistance. AR loss also increased some canonical ER signaling events and restored sensitivity of TamR cells to tamoxifen. In contrast, enzalutamide did not recapitulate the effect of AR knockdown in vitro, even though it inhibited canonical AR signaling, which suggests that it is the non-canonical AR activity that facilitated endocrine resistance. Enzalutamide had demonstrable efficacy in inhibiting AR activity in vivo but did not affect the growth of the endocrine-resistant PDX model. Our findings implicate non-canonical AR activity in facilitating an endocrine-resistant phenotype in breast cancer. Unlike canonical AR signaling which is inhibited by enzalutamide, non-canonical AR activity is not effectively antagonized by enzalutamide, and this has important implications in the design of future AR-targeted clinical trials in endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- KeeMing Chia
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst, New South Wales, Australia
| | - Heloisa Milioli
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst, New South Wales, Australia
| | - Neil Portman
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst, New South Wales, Australia
| | - Geraldine Laven-Law
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Rhiannon Coulson
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst, New South Wales, Australia
| | - Aliza Yong
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst, New South Wales, Australia
| | - Davendra Segara
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst, New South Wales, Australia
| | - Andrew Parker
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst, New South Wales, Australia
| | - Catherine E Caldon
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst, New South Wales, Australia
| | - Niantao Deng
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst, New South Wales, Australia
| | - Alexander Swarbrick
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst, New South Wales, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Elgene Lim
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst, New South Wales, Australia
| |
Collapse
|
10
|
Kao TL, Chen YL, Kuan YP, Chang WC, Ho YC, Yeh S, Jeng LB, Ma WL. Estrogen-Estrogen Receptor α Signaling Facilitates Bilirubin Metabolism in Regenerating Liver Through Regulating Cytochrome P450 2A6 Expression. Cell Transplant 2018; 26:1822-1829. [PMID: 29338386 PMCID: PMC5784527 DOI: 10.1177/0963689717738258] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND After living donor liver transplantation (LDLT), rising serum bilirubin levels commonly indicate insufficient numbers of hepatocytes are available to metabolize bilirubin into biliverdin. Recovery of bilirubin levels is an important marker of hepatocyte repopulation after LDLT. Cytochrome P450 (CYP) 2A6 in humans (or cyp2a4 in rodents) can function as "bilirubin oxidase." Functional hepatocytes contain abundant CYP2A6, which is considered a marker for hepatocyte function recovery. The aim of our study was to determine the impact of estradiol/estrogen receptor signaling on bilirubin levels during liver function recovery. METHODS We conducted a hospital-based cohort study of bilirubin levels after LDLT surgery in both liver graft donors and recipients, performed a transcriptome comparison of wild-type versus estrogen receptor (ER)α knockout mice and a bioinformatics analysis of transcriptome changes in their regenerating liver after two-third partial hepatectomy (PHx), and assayed in vitro expression of cytochrome (CYP2A6) in human hepatic progenitor cells (HepRG) treated with 17β-estradiol (E2). RESULTS The latency of bilirubin level reduction was shorter in women than in men, suggesting that a female factor promotes bilirubin recovery after liver transplantation surgery. In the PHx mouse model, the expression of the cyp2a4 gene was significantly lower in livers from the knockout ERα mice than in livers from their wild-type littermates; but the expression of other bilirubin metabolism-related genes were similar between these groups. Moreover, E2 or bilirubin treatments significantly promoted CYP2A6 expression in hepatocyte progenitor cells (HepRG cells). Sequence analysis revealed similar levels of aryl hydrocarbon receptor (AhR; bilirubin responsive nuclear receptor) and ESR1 binding to the promoter region of CYP2A6. CONCLUSIONS This is the first report to demonstrate, on a molecular level, that E2/ERα signaling facilitates bilirubin metabolism in regenerating liver. Our findings contribute new knowledge to our understanding of why the latency of improved bilirubin metabolism and thereby liver function recovery is shorter in females than in males.
Collapse
Affiliation(s)
- Ta-Lun Kao
- 1 Graduate Institution of Clinical Medical Science and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,2 Department of Trauma and Critical Care, Changhua Christian Hospital, Changhua, Taiwan
| | - Yao-Li Chen
- 3 Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu-Ping Kuan
- 4 Department of Obstetrics and Gynecology, Sex Hormone Research Center, Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Chun Chang
- 4 Department of Obstetrics and Gynecology, Sex Hormone Research Center, Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chen Ho
- 1 Graduate Institution of Clinical Medical Science and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,4 Department of Obstetrics and Gynecology, Sex Hormone Research Center, Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
| | - Shuyuan Yeh
- 5 Department of Urology, University of Rochester Medical Center, Rochester, NY, USA
| | - Long-Bin Jeng
- 1 Graduate Institution of Clinical Medical Science and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,4 Department of Obstetrics and Gynecology, Sex Hormone Research Center, Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Lung Ma
- 1 Graduate Institution of Clinical Medical Science and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,4 Department of Obstetrics and Gynecology, Sex Hormone Research Center, Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan.,6 Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
11
|
Lai HC, Yeh CC, Jeng LB, Huang SF, Liao PY, Lei FJ, Cheng WC, Hsu CL, Cai X, Chang C, Ma WL. Androgen receptor mitigates postoperative disease progression of hepatocellular carcinoma by suppressing CD90+ populations and cell migration and by promoting anoikis in circulating tumor cells. Oncotarget 2018; 7:46448-46465. [PMID: 27340775 PMCID: PMC5216809 DOI: 10.18632/oncotarget.10186] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/28/2016] [Indexed: 02/06/2023] Open
Abstract
Purpose Although hepatectomy and liver transplantation surgery for hepatocellular carcinoma (HCC) are effective treatment modalities, the risk of recurrence remains high, particularly in patients with a high number of circulating tumor cells (CTCs) expressing cancer stem/progenitor cell markers. Androgen receptor (AR) signaling has been shown to suppress HCC metastasis in rodent models of HCC. In this study, we investigated whether AR is associated with postoperative HCC recurrence. Experimental Design CTCs were obtained from patients with HCC who had undergone hepatectomy to investigate whether they are associated with disease outcome. AR knockout was introduced in two mouse models of spontaneous HCC (carcinogen- and hepatitis B virus-related HCC) to delineate the role that AR plays in HCC recurrence. Biological systems analysis was used to investigate the cellular and molecular mechanisms. Results We found that the expression of AR in CTCs was negatively associated with HCC recurrence/progression after hepatectomy. Our results suggest that AR-mediated suppression of HCC recurrence/progression is governed by a three-pronged mechanism. First, AR suppresses the expression of CD90 in CTCs by upregulating Histone 3H2A. Second, AR suppresses cell migration at the transcriptome level. Third, AR promotes anoikis of CTCs via dysregulation of cytoskeletal adsorption. Conclusions The results indicate that AR expression may be the gatekeeper of postoperative HCC recurrence. Therefore, targeting AR in presurgical down-staging procedures may serve as a secondary prevention measure against HCC recurrence in the future.
Collapse
Affiliation(s)
- Hsueh-Chou Lai
- Graduate Institution of Clinical Medical Science, and Graduate Institution of Cancer Biology, China Medical University, Taichung 40403, Taiwan.,Sex Hormone Research Center, Organ Transplantation Center, Research Center for Tumor Medical Science, and Department of Gastroenterology, China Medical University/Hospital, Taichung 40403, Taiwan
| | - Chun-Chieh Yeh
- Graduate Institution of Clinical Medical Science, and Graduate Institution of Cancer Biology, China Medical University, Taichung 40403, Taiwan.,Sex Hormone Research Center, Organ Transplantation Center, Research Center for Tumor Medical Science, and Department of Gastroenterology, China Medical University/Hospital, Taichung 40403, Taiwan
| | - Long-Bin Jeng
- Graduate Institution of Clinical Medical Science, and Graduate Institution of Cancer Biology, China Medical University, Taichung 40403, Taiwan
| | - Shang-Fen Huang
- Sex Hormone Research Center, Organ Transplantation Center, Research Center for Tumor Medical Science, and Department of Gastroenterology, China Medical University/Hospital, Taichung 40403, Taiwan
| | - Pei-Ying Liao
- Sex Hormone Research Center, Organ Transplantation Center, Research Center for Tumor Medical Science, and Department of Gastroenterology, China Medical University/Hospital, Taichung 40403, Taiwan
| | - Fu-Ju Lei
- Graduate Institution of Clinical Medical Science, and Graduate Institution of Cancer Biology, China Medical University, Taichung 40403, Taiwan.,Sex Hormone Research Center, Organ Transplantation Center, Research Center for Tumor Medical Science, and Department of Gastroenterology, China Medical University/Hospital, Taichung 40403, Taiwan
| | - Wei-Chun Cheng
- Graduate Institution of Clinical Medical Science, and Graduate Institution of Cancer Biology, China Medical University, Taichung 40403, Taiwan.,Sex Hormone Research Center, Organ Transplantation Center, Research Center for Tumor Medical Science, and Department of Gastroenterology, China Medical University/Hospital, Taichung 40403, Taiwan
| | - Cheng-Lung Hsu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung University/Memorial Hospital, Taoyuan 333, Taiwan
| | - Xiujun Cai
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Chawnshang Chang
- Sex Hormone Research Center, Organ Transplantation Center, Research Center for Tumor Medical Science, and Department of Gastroenterology, China Medical University/Hospital, Taichung 40403, Taiwan.,Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.,George Whipple Laboratory for Cancer Research, Department of Pathology, The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14623, USA
| | - Wen-Lung Ma
- Graduate Institution of Clinical Medical Science, and Graduate Institution of Cancer Biology, China Medical University, Taichung 40403, Taiwan.,Sex Hormone Research Center, Organ Transplantation Center, Research Center for Tumor Medical Science, and Department of Gastroenterology, China Medical University/Hospital, Taichung 40403, Taiwan
| |
Collapse
|
12
|
Hu K, Yin F, Yu M, Sun C, Li J, Liang Y, Li W, Xie M, Lao Y, Liang W, Li ZG. In-Tether Chiral Center Induced Helical Peptide Modulators Target p53-MDM2/MDMX and Inhibit Tumor Growth in Stem-Like Cancer Cell. Theranostics 2017; 7:4566-4576. [PMID: 29158845 PMCID: PMC5695149 DOI: 10.7150/thno.19840] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 09/08/2017] [Indexed: 02/07/2023] Open
Abstract
Inhibition of the interaction between p53 and MDM2/MDMX has attracted significant attention in anticancer therapy development. We designed a series of in-tether chiral center-induced helical stabilized peptides, among which MeR/PhR effectively reactivated p53. The activation of p53 inhibits cell proliferation and induces apoptosis in both the MCF-7 normal tumor cell line and the PA-1 pluripotent cancer cell line with only minimal cellular toxicity towards normal cells or cancer cell lines with p53 mutations. The in vivo bioactivity study of the peptide in the ovarian teratocarcinoma (PA-1) xenograft model showed a tumor growth rate inhibition of 70% with a dosage of 10 mg/kg (one injection every other day). This is the first application of a stabilized peptide modulator targeting stem-like cancer cell both in vitro and in vivo and provides references to cancer stem cell therapy.
Collapse
|
13
|
Ruan Z, Liu J, Kuang Y. Isolation and characterization of side population cells from the human ovarian cancer cell line SK-OV-3. Exp Ther Med 2015; 10:2071-2078. [PMID: 26668597 PMCID: PMC4665172 DOI: 10.3892/etm.2015.2836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 09/29/2015] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer (OC) is the most malignant type of gynecological tumor due to its high recurrence rate following initial treatment. Previous studies have indicated that cancer stem cells (CSCs) may be a potential cause underlying the high proportion of recurrence. Side population (SP) cells isolated from cancer cell lines have been shown to exhibit characteristics associated with CSCs, but studies on SP cells in human ovarian SK-OV-3 cell line are limited. In the present study, the SP cell fraction (4.83% of the total cell population) was isolated using flow cytometry, and analyzed by immunocytochemical analysis and reverse transcription-quantitative polymerase chain reaction. The results showed that SP cells exhibited a high mean fluorescence intensity for CD44, a CSC marker, in addition to elevated expression of the CSCs-associated genes, ATP-binding cassette sub-family G member 2 and Nestin. These findings indicated the stem cell-like features of the SP cells. Furthermore, a colony formation test showed that the isolated SP cells possessed a marked capacity for self-regeneration and proliferation. In addition, a cell cycle assay involving cisplatin indicated that the SP cells were strongly resistant to chemotherapy. In conclusion, the present results suggested that SP cells isolated from the SK-OV-3 cell line exhibited properties typically associated with CSCs. Therefore, the isolated SP cells may be used to provide novel insight into potential therapies against OC.
Collapse
Affiliation(s)
- Zhengyi Ruan
- Department of Gynecology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Jianhua Liu
- Department of Gynecology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
14
|
Nasiri M, Nikolaou N, Parajes S, Krone NP, Valsamakis G, Mastorakos G, Hughes B, Taylor A, Bujalska IJ, Gathercole LL, Tomlinson JW. 5α-Reductase Type 2 Regulates Glucocorticoid Action and Metabolic Phenotype in Human Hepatocytes. Endocrinology 2015; 156:2863-71. [PMID: 25974403 PMCID: PMC4511138 DOI: 10.1210/en.2015-1149] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glucocorticoids and androgens have both been implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD); androgen deficiency in males, androgen excess in females, and glucocorticoid excess in both sexes are associated with NAFLD. Glucocorticoid and androgen action are regulated at a prereceptor level by the enzyme 5α-reductase type 2 (SRD5A2), which inactivates glucocorticoids to their dihydrometabolites and converts T to DHT. We have therefore explored the role of androgens and glucocorticoids and their metabolism by SRD5A2 upon lipid homeostasis in human hepatocytes. In both primary human hepatocytes and human hepatoma cell lines, glucocorticoids decreased de novo lipogenesis in a dose-dependent manner. Whereas androgen treatment (T and DHT) increased lipogenesis in cell lines and in primary cultures of human hepatocytes from female donors, it was without effect in primary hepatocyte cultures from men. SRD5A2 overexpression reduced the effects of cortisol to suppress lipogenesis and this effect was lost following transfection with an inactive mutant construct. Conversely, pharmacological inhibition using the 5α-reductase inhibitors finasteride and dutasteride augmented cortisol action. We have demonstrated that manipulation of SRD5A2 activity can regulate lipogenesis in human hepatocytes in vitro. This may have significant clinical implications for those patients prescribed 5α-reductase inhibitors, in particular augmenting the actions of glucocorticoids to modulate hepatic lipid flux.
Collapse
Affiliation(s)
- Maryam Nasiri
- Centre for Endocrinology, Diabetes and Metabolism (M.N., S.P., N.P.K., B.H., A.T., I.J.B.), Institute of Biomedical Research, School of Clinical and Experimental Medicine, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Oxford Centre for Diabetes, Endocrinology & Metabolism (N.N., L.L.G., J.W.T.), NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, United Kingdom; and Endocrine Unit, Second Department of Obstetrics and Gynecology and Pathology Department (G.V., G.M.), Aretaieion University Hospital, Athens Medical School, Athens, 11528, Greece
| | - Nikolaos Nikolaou
- Centre for Endocrinology, Diabetes and Metabolism (M.N., S.P., N.P.K., B.H., A.T., I.J.B.), Institute of Biomedical Research, School of Clinical and Experimental Medicine, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Oxford Centre for Diabetes, Endocrinology & Metabolism (N.N., L.L.G., J.W.T.), NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, United Kingdom; and Endocrine Unit, Second Department of Obstetrics and Gynecology and Pathology Department (G.V., G.M.), Aretaieion University Hospital, Athens Medical School, Athens, 11528, Greece
| | - Silvia Parajes
- Centre for Endocrinology, Diabetes and Metabolism (M.N., S.P., N.P.K., B.H., A.T., I.J.B.), Institute of Biomedical Research, School of Clinical and Experimental Medicine, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Oxford Centre for Diabetes, Endocrinology & Metabolism (N.N., L.L.G., J.W.T.), NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, United Kingdom; and Endocrine Unit, Second Department of Obstetrics and Gynecology and Pathology Department (G.V., G.M.), Aretaieion University Hospital, Athens Medical School, Athens, 11528, Greece
| | - Nils P Krone
- Centre for Endocrinology, Diabetes and Metabolism (M.N., S.P., N.P.K., B.H., A.T., I.J.B.), Institute of Biomedical Research, School of Clinical and Experimental Medicine, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Oxford Centre for Diabetes, Endocrinology & Metabolism (N.N., L.L.G., J.W.T.), NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, United Kingdom; and Endocrine Unit, Second Department of Obstetrics and Gynecology and Pathology Department (G.V., G.M.), Aretaieion University Hospital, Athens Medical School, Athens, 11528, Greece
| | - George Valsamakis
- Centre for Endocrinology, Diabetes and Metabolism (M.N., S.P., N.P.K., B.H., A.T., I.J.B.), Institute of Biomedical Research, School of Clinical and Experimental Medicine, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Oxford Centre for Diabetes, Endocrinology & Metabolism (N.N., L.L.G., J.W.T.), NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, United Kingdom; and Endocrine Unit, Second Department of Obstetrics and Gynecology and Pathology Department (G.V., G.M.), Aretaieion University Hospital, Athens Medical School, Athens, 11528, Greece
| | - George Mastorakos
- Centre for Endocrinology, Diabetes and Metabolism (M.N., S.P., N.P.K., B.H., A.T., I.J.B.), Institute of Biomedical Research, School of Clinical and Experimental Medicine, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Oxford Centre for Diabetes, Endocrinology & Metabolism (N.N., L.L.G., J.W.T.), NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, United Kingdom; and Endocrine Unit, Second Department of Obstetrics and Gynecology and Pathology Department (G.V., G.M.), Aretaieion University Hospital, Athens Medical School, Athens, 11528, Greece
| | - Beverly Hughes
- Centre for Endocrinology, Diabetes and Metabolism (M.N., S.P., N.P.K., B.H., A.T., I.J.B.), Institute of Biomedical Research, School of Clinical and Experimental Medicine, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Oxford Centre for Diabetes, Endocrinology & Metabolism (N.N., L.L.G., J.W.T.), NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, United Kingdom; and Endocrine Unit, Second Department of Obstetrics and Gynecology and Pathology Department (G.V., G.M.), Aretaieion University Hospital, Athens Medical School, Athens, 11528, Greece
| | - Angela Taylor
- Centre for Endocrinology, Diabetes and Metabolism (M.N., S.P., N.P.K., B.H., A.T., I.J.B.), Institute of Biomedical Research, School of Clinical and Experimental Medicine, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Oxford Centre for Diabetes, Endocrinology & Metabolism (N.N., L.L.G., J.W.T.), NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, United Kingdom; and Endocrine Unit, Second Department of Obstetrics and Gynecology and Pathology Department (G.V., G.M.), Aretaieion University Hospital, Athens Medical School, Athens, 11528, Greece
| | - Iwona J Bujalska
- Centre for Endocrinology, Diabetes and Metabolism (M.N., S.P., N.P.K., B.H., A.T., I.J.B.), Institute of Biomedical Research, School of Clinical and Experimental Medicine, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Oxford Centre for Diabetes, Endocrinology & Metabolism (N.N., L.L.G., J.W.T.), NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, United Kingdom; and Endocrine Unit, Second Department of Obstetrics and Gynecology and Pathology Department (G.V., G.M.), Aretaieion University Hospital, Athens Medical School, Athens, 11528, Greece
| | - Laura L Gathercole
- Centre for Endocrinology, Diabetes and Metabolism (M.N., S.P., N.P.K., B.H., A.T., I.J.B.), Institute of Biomedical Research, School of Clinical and Experimental Medicine, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Oxford Centre for Diabetes, Endocrinology & Metabolism (N.N., L.L.G., J.W.T.), NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, United Kingdom; and Endocrine Unit, Second Department of Obstetrics and Gynecology and Pathology Department (G.V., G.M.), Aretaieion University Hospital, Athens Medical School, Athens, 11528, Greece
| | - Jeremy W Tomlinson
- Centre for Endocrinology, Diabetes and Metabolism (M.N., S.P., N.P.K., B.H., A.T., I.J.B.), Institute of Biomedical Research, School of Clinical and Experimental Medicine, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Oxford Centre for Diabetes, Endocrinology & Metabolism (N.N., L.L.G., J.W.T.), NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, United Kingdom; and Endocrine Unit, Second Department of Obstetrics and Gynecology and Pathology Department (G.V., G.M.), Aretaieion University Hospital, Athens Medical School, Athens, 11528, Greece
| |
Collapse
|