1
|
Pitzen SP, Dehm SM. Basal epithelial cells in prostate development, tumorigenesis, and cancer progression. Cell Cycle 2023; 22:1303-1318. [PMID: 37098827 PMCID: PMC10228417 DOI: 10.1080/15384101.2023.2206502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 04/27/2023] Open
Abstract
The prostate epithelium is composed of two predominant cell populations: luminal and basal epithelial cells. Luminal cells have a secretory function that supports male fertility while basal cells function in regeneration and maintenance of epithelial tissue. Recent studies in humans and mice have expanded our knowledge of the role and regulation of luminal and basal cells in prostate organogenesis, development, and homeostasis. The insights from healthy prostate biology can inform studies focused on the origins of prostate cancer, progression of the disease, and development of resistance to targeted hormonal therapies. In this review, we discuss a critical role for basal cells in the development and maintenance of healthy prostate tissue. Additionally, we provide evidence supporting a role for basal cells in oncogenesis and therapeutic resistance mechanisms of prostate cancer. Finally, we describe basal cell regulators that may promote lineage plasticity and basal cell identity in prostate cancers that have developed therapeutic resistance. These regulators could serve as therapeutic targets to inhibit or delay resistance and thereby improve outcomes for prostate cancer patients.
Collapse
Affiliation(s)
- Samuel P. Pitzen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Molecular, Cellular, and Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Scott M. Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Prostate luminal progenitor cells: from mouse to human, from health to disease. Nat Rev Urol 2022; 19:201-218. [DOI: 10.1038/s41585-021-00561-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/11/2022]
|
3
|
Joseph DB, Turco AE, Vezina CM, Strand DW. Progenitors in prostate development and disease. Dev Biol 2021; 473:50-58. [PMID: 33529704 DOI: 10.1016/j.ydbio.2020.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022]
Abstract
The prostate develops by epithelial budding and branching processes that occur during fetal and postnatal stages. The adult prostate demonstrates remarkable regenerative capacity, with the ability to regrow to its original size over multiple cycles of castration and androgen administration. This capacity for controlled regeneration prompted the search for an androgen-independent epithelial progenitor in benign prostatic hyperplasia (BPH) and prostate cancer (PCa). BPH is hypothesized to be a reawakening of ductal branching, resulting in the formation of new proximal glands, all while androgen levels are decreasing in the aging male. Advanced prostate cancer can be slowed with androgen deprivation, but resistance eventually occurs, suggesting the existence of an androgen-independent progenitor. Recent studies indicate that there are multiple castration-insensitive epithelial cell types in the proximal area of the prostate, but not all act as progenitors during prostate development or regeneration. This review highlights how recent cellular and anatomical studies are changing our perspective on the identity of the prostate progenitor.
Collapse
Affiliation(s)
- Diya B Joseph
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Anne E Turco
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Chad M Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Douglas W Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
4
|
Carpenter VJ, Patel BB, Autorino R, Smith SC, Gewirtz DA, Saleh T. Senescence and castration resistance in prostate cancer: A review of experimental evidence and clinical implications. Biochim Biophys Acta Rev Cancer 2020; 1874:188424. [PMID: 32956765 DOI: 10.1016/j.bbcan.2020.188424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 01/10/2023]
Abstract
The development of Castration-Resistant Prostate Cancer (CRPC) remains a major challenge in the treatment of this disease. While Androgen Deprivation Therapy (ADT) can result in tumor shrinkage, a primary response of Prostate Cancer (PCa) cells to ADT is a senescent growth arrest. As a response to cancer therapies, senescence has often been considered as a beneficial outcome due to its association with stable growth abrogation, as well as the potential for immune system activation via the Senescence-Associated Secretory Phenotype (SASP). However, there is increasing evidence that not only can senescent cells regain proliferative capacity, but that senescence contributes to deleterious effects of cancer chemotherapy, including disease recurrence. Notably, the preponderance of work investigating the consequences of therapy-induced senescence on tumor progression has been performed in non-PCa models. Here, we summarize the evidence that ADT promotes a senescent response in PCa and postulate mechanisms by which senescence may contribute to the development of castration-resistance. Primarily, we suggest that ADT-induced senescence may support CRPC development via escape from senescence, by cell autonomous-reprogramming, and by the formation of a pro-tumorigenic SASP. However, due to the scarcity of direct evidence from PCa models, the consequences of ADT-induced senescence outlined here remain speculative until the relationship between senescence and CRPC can be experimentally defined.
Collapse
Affiliation(s)
- Valerie J Carpenter
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Bhaumik B Patel
- Department of Internal Medicine, Division of Hematology, Oncology & Palliative Care, VCU Health, Richmond, VA, USA
| | - Riccardo Autorino
- Department of Surgery, Division of Urology, VCU Health, Richmond, VA, USA
| | | | - David A Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Tareq Saleh
- The Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan.
| |
Collapse
|
5
|
Joseph DB, Henry GH, Malewska A, Iqbal NS, Ruetten HM, Turco AE, Abler LL, Sandhu SK, Cadena MT, Malladi VS, Reese JC, Mauck RJ, Gahan JC, Hutchinson RC, Roehrborn CG, Baker LA, Vezina CM, Strand DW. Urethral luminal epithelia are castration-insensitive cells of the proximal prostate. Prostate 2020; 80:872-884. [PMID: 32497356 PMCID: PMC7339731 DOI: 10.1002/pros.24020] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Castration-insensitive epithelial progenitors capable of regenerating the prostate have been proposed to be concentrated in the proximal region based on facultative assays. Functional characterization of prostate epithelial populations isolated with individual cell surface markers has failed to provide a consensus on the anatomical and transcriptional identity of proximal prostate progenitors. METHODS Here, we use single-cell RNA sequencing to obtain a complete transcriptomic profile of all epithelial cells in the mouse prostate and urethra to objectively identify cellular subtypes. Pan-transcriptomic comparison to human prostate cell types identified a mouse equivalent of human urethral luminal cells, which highly expressed putative prostate progenitor markers. Validation of the urethral luminal cell cluster was performed using immunostaining and flow cytometry. RESULTS Our data reveal that previously identified facultative progenitors marked by Trop2, Sca-1, KRT4, and PSCA are actually luminal epithelial cells of the urethra that extend into the proximal region of the prostate, and are resistant to castration-induced androgen deprivation. Mouse urethral luminal cells were identified to be the equivalent of previously identified human club and hillock cells that similarly extend into proximal prostate ducts. Benign prostatic hyperplasia (BPH) has long been considered an "embryonic reawakening," but the cellular origin of the hyperplastic growth concentrated in the periurethral region is unclear. We demonstrate an increase in urethral luminal cells within glandular nodules from BPH patients. Urethral luminal cells are further increased in patients treated with a 5-α reductase inhibitor. CONCLUSIONS Our data demonstrate that cells of the proximal prostate that express putative progenitor markers, and are enriched by castration in the proximal prostate, are urethral luminal cells and that these cells may play an important role in the etiology of human BPH.
Collapse
Affiliation(s)
- Diya B. Joseph
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Gervaise H. Henry
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas
| | - Alicia Malewska
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Nida S. Iqbal
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Hannah M. Ruetten
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Anne E. Turco
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lisa L. Abler
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Simran K. Sandhu
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Mark T. Cadena
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Venkat S. Malladi
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas
| | | | - Ryan J. Mauck
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Jeffrey C. Gahan
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | | | | | - Linda A. Baker
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Chad M. Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Douglas W. Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
6
|
O'Reilly D, Johnson P, Buchanan PJ. Hypoxia induced cancer stem cell enrichment promotes resistance to androgen deprivation therapy in prostate cancer. Steroids 2019; 152:108497. [PMID: 31521707 DOI: 10.1016/j.steroids.2019.108497] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
Androgen deprivation therapy (ADT) is the main treatment to prolong survival in advance stage prostate cancer (PCa) but associated resistance leads to the development of terminal castrate resistant PCa (CRPC). Current research demonstrates that prostate cancer stem cells (PCSC) play a critical role in the development of treatment resistance and subsequent disease progression. Despite uncertainty surrounding the origin of these cells, studies clearly show they are associated with poorer outcomes and that ADT significantly enhances their numbers. Here in we highlight how activation of HIF signalling, in response to hypoxic conditions within the tumour microenvironment, results in the expression of genes associated with stemness and EMT promoting PCSC emergence which ultimately drives tumour relapse to CRPC. Hypoxic conditions are not only enhanced by ADT but the associated decrease in AR activation also promotes PI3K/AKT signalling which actively enhances HIF and its effects on PCSC's. Furthermore, emerging evidence now indicates that HIF-2α, rather than the commonly considered HIF-1α, is the main family member that drives PCSC emergence. Taken together this clearly identifies HIF and associated pathways as key targets for new therapeutic strategies that could potentially prevent or slow PCSC promoted resistance to ADT, thus holding potential to prolong patient survival.
Collapse
Affiliation(s)
- Debbie O'Reilly
- School of Nursing & Human Sciences, Dublin City University, Dublin, Ireland; National Institute of Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Patricia Johnson
- School of Nursing & Human Sciences, Dublin City University, Dublin, Ireland
| | - Paul J Buchanan
- School of Nursing & Human Sciences, Dublin City University, Dublin, Ireland; National Institute of Cellular Biotechnology, Dublin City University, Dublin, Ireland.
| |
Collapse
|
7
|
Barros-Silva JD, Linn DE, Steiner I, Guo G, Ali A, Pakula H, Ashton G, Peset I, Brown M, Clarke NW, Bronson RT, Yuan GC, Orkin SH, Li Z, Baena E. Single-Cell Analysis Identifies LY6D as a Marker Linking Castration-Resistant Prostate Luminal Cells to Prostate Progenitors and Cancer. Cell Rep 2018; 25:3504-3518.e6. [PMID: 30566873 PMCID: PMC6315111 DOI: 10.1016/j.celrep.2018.11.069] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 09/26/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022] Open
Abstract
The exact identity of castrate-resistant (CR) cells and their relation to CR prostate cancer (CRPC) is unresolved. We use single-cell gene profiling to analyze the molecular heterogeneity in basal and luminal compartments. Within the luminal compartment, we identify a subset of cells intrinsically resistant to castration with a bi-lineage gene expression pattern. We discover LY6D as a marker of CR prostate progenitors with multipotent differentiation and enriched organoid-forming capacity. Lineage tracing further reveals that LY6D+ CR luminal cells can produce LY6D- luminal cells. In contrast, in luminal cells lacking PTEN, LY6D+ cells predominantly give rise to LY6D+ tumor cells, contributing to high-grade PIN lesions. Gene expression analyses in patients' biopsies indicate that LY6D expression correlates with early disease progression, including progression to CRPC. Our studies thus identify a subpopulation of luminal progenitors characterized by LY6D expression and intrinsic castration resistance. LY6D may serve as a prognostic maker for advanced prostate cancer.
Collapse
Affiliation(s)
- João D Barros-Silva
- Prostate Oncobiology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Douglas E Linn
- Division of Genetics, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ivana Steiner
- Prostate Oncobiology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Guoji Guo
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Adnan Ali
- Prostate Oncobiology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Hubert Pakula
- Division of Genetics, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Garry Ashton
- Histology Unit, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Isabel Peset
- Imaging Unit, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Michael Brown
- Genito-Urinary Cancer Research, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Noel W Clarke
- Genito-Urinary Cancer Research, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4GJ, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Department of Surgery, The Christie Hospital, Department of Urology, Salford Royal Hospitals, Manchester, UK
| | | | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115, USA
| | - Stuart H Orkin
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Zhe Li
- Division of Genetics, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Esther Baena
- Prostate Oncobiology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK.
| |
Collapse
|
8
|
Kwak M, Ninche N, Klein S, Saur D, Ghazizadeh S. c-Kit + Cells in Adult Salivary Glands do not Function as Tissue Stem Cells. Sci Rep 2018; 8:14193. [PMID: 30242278 PMCID: PMC6155036 DOI: 10.1038/s41598-018-32557-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/10/2018] [Indexed: 11/01/2022] Open
Abstract
A rare population of salivary gland cells isolated based on c-Kit immunoreactivity are thought to represent tissue stem cells since they exhibit the most robust proliferative and differentiation capacity ex vivo. Despite their high promise for cell-based therapies aimed at restoring salivary function, the precise location and in vivo function of c-Kit+ stem cells remain unclear. Here, by combining immunostaining with c-KitCreERT2-based genetic labeling and lineage tracing in the adult mouse salivary glands, we show that c-Kit is expressed in a relatively large and heterogeneous cell population that consists mostly of differentiated cells. Moreover, c-Kit does not mark ductal stem cells that are known to express cytokeratin K14. Tracking the fate of in vivo-labeled c-Kit+ or that of K14+ cells in spheroid cultures reveals a limited proliferative potential for c-Kit+ cells and identifies K14+ cells as the major source of salispheres in these cultures. Long-term in vivo lineage tracing studies indicate that although c-Kit marks at least two discrete ductal cell lineages, c-Kit+ cells do not contribute to the normal maintenance of any other cell lineages. Our results indicate that c-Kit is not a reliable marker for salivary gland stem cells, which has important implications for salivary gland regenerative therapies.
Collapse
Affiliation(s)
- Mingyu Kwak
- Department of Oral Biology & Pathology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Ninche Ninche
- Department of Oral Biology & Pathology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Sabine Klein
- Department of Internal Medicine, Technical University of Munich, München, Germany
| | - Dieter Saur
- Department of Internal Medicine, Technical University of Munich, München, Germany
| | - Soosan Ghazizadeh
- Department of Oral Biology & Pathology, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
9
|
Skvortsov S, Skvortsova II, Tang DG, Dubrovska A. Concise Review: Prostate Cancer Stem Cells: Current Understanding. Stem Cells 2018; 36:1457-1474. [PMID: 29845679 DOI: 10.1002/stem.2859] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/05/2018] [Accepted: 05/01/2018] [Indexed: 12/29/2022]
Abstract
Prostate cancer (PCa) is heterogeneous, harboring phenotypically diverse cancer cell types. PCa cell heterogeneity is caused by genomic instability that leads to the clonal competition and evolution of the cancer genome and by epigenetic mechanisms that result in subclonal cellular differentiation. The process of tumor cell differentiation is initiated from a population of prostate cancer stem cells (PCSCs) that possess many phenotypic and functional properties of normal stem cells. Since the initial reports on PCSCs in 2005, there has been much effort to elucidate their biological properties, including unique metabolic characteristics. In this Review, we discuss the current methods for PCSC enrichment and analysis, the hallmarks of PCSC metabolism, and the role of PCSCs in tumor progression. Stem Cells 2018;36:1457-1474.
Collapse
Affiliation(s)
- Sergej Skvortsov
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, USA.,Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
10
|
Brocqueville G, Chmelar RS, Bauderlique-Le Roy H, Deruy E, Tian L, Vessella RL, Greenberg NM, Rohrschneider LR, Bourette RP. s-SHIP expression identifies a subset of murine basal prostate cells as neonatal stem cells. Oncotarget 2018; 7:29228-44. [PMID: 27081082 PMCID: PMC5045392 DOI: 10.18632/oncotarget.8709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
Isolation of prostate stem cells (PSCs) is crucial for understanding their biology during normal development and tumorigenesis. In this aim, we used a transgenic mouse model expressing GFP from the stem cell-specific s-SHIP promoter to mark putative stem cells during postnatal prostate development. Here we show that cells identified by GFP expression are present transiently during early prostate development and localize to the basal cell layer of the epithelium. These prostate GFP+ cells are a subpopulation of the Lin- CD24+ Sca-1+ CD49f+ cells and are capable of self-renewal together with enhanced growth potential in sphere-forming assay in vitro, a phenotype consistent with that of a PSC population. Transplantation assays of prostate GFP+ cells demonstrate reconstitution of prostate ducts containing both basal and luminal cells in renal grafts. Altogether, these results demonstrate that s-SHIP promoter expression is a new marker for neonatal basal prostate cells exhibiting stem cell properties that enables PSCs in situ identification and isolation via a single consistent parameter. Transcriptional profiling of these GFP+ neonatal stem cells showed an increased expression of several components of the Wnt signaling pathway. It also identified stem cell regulators with potential applications for further analyses of normal and cancer stem cells.
Collapse
Affiliation(s)
- Guillaume Brocqueville
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, SIRIC ONCOLille, F-59000 Lille, France
| | - Renee S Chmelar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Hélène Bauderlique-Le Roy
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, SIRIC ONCOLille, F-59000 Lille, France
| | - Emeric Deruy
- BioImaging Center Lille, Institut Pasteur de Lille, University of Lille, F-59000 Lille, France
| | - Lu Tian
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, SIRIC ONCOLille, F-59000 Lille, France
| | - Robert L Vessella
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Norman M Greenberg
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Present address: NMG Scientific Consulting, North Potomac, MD 20878, USA
| | - Larry R Rohrschneider
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Roland P Bourette
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, SIRIC ONCOLille, F-59000 Lille, France
| |
Collapse
|
11
|
Ferrucci D, Biancardi MF, Nishan U, Rosa-Ribeiro R, Carvalho HF. Desquamation takes center stage at the origin of proliferative inflammatory atrophy, epithelial-mesenchymal transition, and stromal growth in benign prostate hyperplasia. Cell Biol Int 2017; 41:1265-1270. [PMID: 28877372 DOI: 10.1002/cbin.10867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/03/2017] [Indexed: 01/24/2023]
Abstract
In this commentary, we propose a relationship between desquamation, initially described as the collective detachment and deletion of epithelial cell in the prostate gland after castration, and proliferative inflammatory atrophy (PIA) and stromal growth in benign prostate hyperplasia (BPH). First, in response to diverse stimuli, including inflammatory mediators, epithelial cells desquamate and leave a large surface of the luminal side of the basement membrane (BM) exposed. Basal cells are activated into intermediate-type cells, which change morphology to cover and remodel the exposed BM (simple atrophy) to a new physiological demand (such as in the hypoandrogen environment, simulated by surgical and/or chemical castration) and/or to support re-epithelialization (under normal androgen levels). In the presence of inflammation (that might be the cause of desquamation), the intermediate-type cells proliferate and characterize PIA. Second, in other circumstances, desquamation is an early step of epithelial-to-mesenchymal transition (EMT), which contributes to stromal growth, as suggested by some experimental models of BPH. The proposed associations correlate unexplored cell behaviors and reveal the remarkable plasticity of the prostate epithelium that might be at the origin of prostate diseases.
Collapse
Affiliation(s)
- Danilo Ferrucci
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas SP, Brazil
| | - Manoel F Biancardi
- Department of Histology, Embryology, and Cell Biology, Institute of Biological Sciences, Federal University of Goiás, Goiania GO, Brazil
| | - Umar Nishan
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Rafaela Rosa-Ribeiro
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas SP, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas SP, Brazil
| |
Collapse
|
12
|
Strand DW, Costa DN, Francis F, Ricke WA, Roehrborn CG. Targeting phenotypic heterogeneity in benign prostatic hyperplasia. Differentiation 2017; 96:49-61. [PMID: 28800482 DOI: 10.1016/j.diff.2017.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 02/07/2023]
Abstract
Benign prostatic hyperplasia and associated lower urinary tract symptoms remain difficult to treat medically, resulting in hundreds of thousands of surgeries performed annually in elderly males. New therapies have not improved clinical outcomes since alpha blockers and 5 alpha reductase inhibitors were introduced in the 1990s. An underappreciated confounder to identifying novel targets is pathological heterogeneity. Individual patients display unique phenotypes, composed of distinct cell types. We have yet to develop a cellular or molecular understanding of these unique phenotypes, which has led to failure in developing targeted therapies for personalized medicine. This review covers the strategic experimental approach to unraveling the cellular pathogenesis of discrete BPH phenotypes and discusses how to incorporate these findings into the clinic to improve outcomes.
Collapse
Affiliation(s)
- Douglas W Strand
- Department of Urology, University of Texas Southwestern Medical Center, USA.
| | - Daniel N Costa
- Department of Radiology, University of Texas Southwestern Medical Center, USA
| | - Franto Francis
- Department of Pathology, University of Texas Southwestern Medical Center, USA
| | - William A Ricke
- Department of Urology, University of Wisconsin School of Medicine, USA
| | - Claus G Roehrborn
- Department of Urology, University of Texas Southwestern Medical Center, USA
| |
Collapse
|
13
|
Yao C, Li G, Cai M, Qian Y, Wang L, Xiao L, Thaiss F, Shi B. Prostate cancer downregulated SIRP-α modulates apoptosis and proliferation through p38-MAPK/NF-κB/COX-2 signaling. Oncol Lett 2017; 13:4995-5001. [PMID: 28588738 DOI: 10.3892/ol.2017.6070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/26/2017] [Indexed: 01/05/2023] Open
Abstract
The present study investigated the regulatory mechanism of signal-regulatory protein (SIRP)-α in the apoptosis and proliferation of prostate cancer (CaP) cells. The expression profile of SIRP-α in prostate cancer cells was analyzed using reverse transcription-quantitative polymerase chain reaction and western blotting. Then SIRP-α function in CaP cells was further analyzed with the overexpression and RNA interference of SIRP-α. The results revealed that SIRP-α expression levels were decreased in CaP tissues and cell lines, with androgen-independent CaP exhibiting a lower SIRP-α expression compared with androgen-dependent CaP. Overexpression of SIRP-α resulted in a significantly reduced number of live CaP cells by enhancing apoptosis, whereas SIRP-α silencing increased CaP cell proliferation. Mechanistically, SIRP-α decreases cyclooxygenase-2 (COX-2) expression and cytokine production by negatively regulating p38 mitogen-activated protein kinase and nuclear factor-κB pathway. Therefore, SIRP-α knockdown decreases cell apoptosis by enhancing COX-2 expression. The present results indicate that SIRP-α may function as a novel negative regulator to modulate cellular proliferation, survival and migration in CaP cells. The heightened sensitivity of cells restoring SIRP-α function could be exploited in the development of therapeutics that may potentiate the antineoplastic effects of conventional cytokines or chemotherapeutic agents.
Collapse
Affiliation(s)
- Chen Yao
- Organ Transplant Institute, Chinese People's Liberation Army 309th Hospital, Beijing 100091, P.R. China
| | - Gang Li
- Organ Transplant Institute, Chinese People's Liberation Army 309th Hospital, Beijing 100091, P.R. China
| | - Ming Cai
- Organ Transplant Institute, Chinese People's Liberation Army 309th Hospital, Beijing 100091, P.R. China
| | - Yeyong Qian
- Organ Transplant Institute, Chinese People's Liberation Army 309th Hospital, Beijing 100091, P.R. China
| | - Liqin Wang
- Organ Transplant Institute, Chinese People's Liberation Army 309th Hospital, Beijing 100091, P.R. China
| | - Li Xiao
- Organ Transplant Institute, Chinese People's Liberation Army 309th Hospital, Beijing 100091, P.R. China
| | - Friedrich Thaiss
- III Medical Clinic, University Hospital, Eppendorf, D-20246 Hamburg, Germany
| | - Bingyi Shi
- Organ Transplant Institute, Chinese People's Liberation Army 309th Hospital, Beijing 100091, P.R. China
| |
Collapse
|
14
|
A label-retaining but unipotent cell population resides in biliary compartment of mammalian liver. Sci Rep 2017; 7:40322. [PMID: 28084309 PMCID: PMC5234023 DOI: 10.1038/srep40322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/05/2016] [Indexed: 12/17/2022] Open
Abstract
Cells with slow proliferation kinetics that retain the nuclear label over long time periods-the label-retaining cells (LRCs)-represent multipotent stem cells in a number of adult tissues. Since the identity of liver LRCs (LLRCs) had remained elusive we utilized a genetic approach to reveal LLRCs in normal non-injured livers and characterized their regenerative properties in vivo and in culture. We found that LLRCs were located in biliary vessels and participated in the regeneration of biliary but not hepatocyte injury. In culture experiments the sorted LLRCs displayed an enhanced self-renewal capacity but a unipotent biliary differentiation potential. Transcriptome analysis revealed a unique set of tumorigenesis- and nervous system-related genes upregulated in LLRCs when compared to non-LRC cholangiocytes. We conclude that the LLRCs established during the normal morphogenesis of the liver do not represent a multipotent primitive somatic stem cell population but act as unipotent biliary progenitor cells.
Collapse
|
15
|
Zhang J, Liang J, Huang J. Downregulated microRNA-26a modulates prostate cancer cell proliferation and apoptosis by targeting COX-2. Oncol Lett 2016; 12:3397-3402. [PMID: 27900011 DOI: 10.3892/ol.2016.5070] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 05/24/2016] [Indexed: 12/11/2022] Open
Abstract
MicroRNA-26a (miR-26a) is expressed at lower levels in prostate cancer cells compared with normal prostate cells. However, the regulatory mechanism of miR-26a in tumorigenesis and metastasis is not clear. In the present study, the expression profile of cellular miR-26a was analyzed by reverse transcription-quantitative polymerase chain reaction. The potential target of miR-26a was identified by luciferase assay and western blotting. Examination of miR-26a function was performed by transfection with miR-26a mimics and inhibitor. It was found that miR-26a expression was decreased in prostate cancer tissues and cell lines, with androgen-independent prostate cancer (AIPC) showing lower miR-26a expression compared with androgen-dependent prostate cancer (ADPC). Overexpression of miR-26a by transfecting miR-26a mimics could significantly enhance apoptosis, and this upregulation of apoptosis was triggered by cytochrome c oxidase subunit II inhibition. Furthermore, it was found that lower miR-26a density resulted in an evidently poor prognosis. Understanding the important roles of miR-26a in regulating cell apoptosis in human prostate cancer cells may aid the exploration of AIPC transformation mechanisms and contribute to the development of miRNA-based therapy in the future.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Oncology, Urumqi General Hospital of Lanzhou Military Command of the Chinese People's Liberation Army, Urumqi, Xinjiang 830000, P.R. China
| | - Jinghao Liang
- Department of Orthopedics, Urumqi General Hospital of Lanzhou Military Command of the Chinese People's Liberation Army, Urumqi, Xinjiang 830000, P.R. China
| | - Jianguo Huang
- Department of Oncology, Urumqi General Hospital of Lanzhou Military Command of the Chinese People's Liberation Army, Urumqi, Xinjiang 830000, P.R. China
| |
Collapse
|
16
|
Olsen JR, Azeem W, Hellem MR, Marvyin K, Hua Y, Qu Y, Li L, Lin B, Ke XS, Øyan AM, Kalland KH. Context dependent regulatory patterns of the androgen receptor and androgen receptor target genes. BMC Cancer 2016; 16:377. [PMID: 27378372 PMCID: PMC4932678 DOI: 10.1186/s12885-016-2453-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 06/23/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Expression of the androgen receptor (AR) is associated with androgen-dependent proliferation arrest and terminal differentiation of normal prostate epithelial cells. Additionally, activation of the AR is required for survival of benign luminal epithelial cells and primary cancer cells, thus androgen deprivation therapy (ADT) leads to apoptosis in both benign and cancerous tissue. Escape from ADT is known as castration-resistant prostate cancer (CRPC). In the course of CRPC development the AR typically switches from being a cell-intrinsic inhibitor of normal prostate epithelial cell proliferation to becoming an oncogene that is critical for prostate cancer cell proliferation. A clearer understanding of the context dependent activation of the AR and its target genes is therefore desirable. METHODS Immortalized human prostate basal epithelial EP156T cells and progeny cells that underwent epithelial to mesenchymal transition (EMT), primary prostate epithelial cells (PrECs) and prostate cancer cell lines LNCaP, VCaP and 22Rv1 were used to examine context dependent restriction and activation of the AR and classical target genes, such as KLK3. Genome-wide gene expression analyses and single cell protein analyses were applied to study the effect of different contexts. RESULTS A variety of growth conditions were tested and found unable to activate AR expression and transcription of classical androgen-dependent AR target genes, such as KLK3, in prostate epithelial cells with basal cell features or in mesenchymal type prostate cells. The restriction of androgen- and AR-dependent transcription of classical target genes in prostate basal epithelial cells was at the level of AR expression. Exogenous AR expression was sufficient for androgen-dependent transcription of AR target genes in prostate basal epithelial cells, but did not exert a positive feedback on endogenous AR expression. Treatment of basal prostate epithelial cells with inhibitors of epigenetic gene silencing was not efficient in inducing androgen-dependent transcription of AR target genes, suggesting the importance of missing cofactor(s). CONCLUSIONS Regulatory mechanisms of AR and androgen-dependent AR target gene transcription are insufficiently understood and may be critical for prostate cancer initiation, progression and escape from standard therapy. The present model is useful for the study of context dependent activation of the AR and its transcriptome.
Collapse
Affiliation(s)
- Jan Roger Olsen
- Department of Clinical Science, University of Bergen, Bergen, Norway. .,, Laboratory Bld. 5. etg, Bergen Health, Bergen, NO-5021, Norway.
| | - Waqas Azeem
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | | | - Kristo Marvyin
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Yaping Hua
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Yi Qu
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Lisha Li
- Cancer Institute, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Biaoyang Lin
- Cancer Institute, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Department of Urology, University of Washington, Seattle, WA, USA
| | - Xi- Song Ke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Karl- Henning Kalland
- Department of Clinical Science, University of Bergen, Bergen, Norway. .,Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway. .,Department of Microbiology, Haukeland University Hospital, Bergen, Norway. .,, Laboratory Bld. 5. etg, Bergen Health, Bergen, NO-5021, Norway.
| |
Collapse
|
17
|
Hu BR, Fairey AS, Madhav A, Yang D, Li M, Groshen S, Stephens C, Kim PH, Virk N, Wang L, Martin SE, Erho N, Davicioni E, Jenkins RB, Den RB, Xu T, Xu Y, Gill IS, Quinn DI, Goldkorn A. AXIN2 expression predicts prostate cancer recurrence and regulates invasion and tumor growth. Prostate 2016; 76:597-608. [PMID: 26771938 PMCID: PMC7455032 DOI: 10.1002/pros.23151] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 12/31/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Treatment of prostate cancer (PCa) may be improved by identifying biological mechanisms of tumor growth that directly impact clinical disease progression. We investigated whether genes associated with a highly tumorigenic, drug resistant, progenitor phenotype impact PCa biology and recurrence. METHODS Radical prostatectomy (RP) specimens (±disease recurrence, N = 276) were analyzed by qRT-PCR to quantify expression of genes associated with self-renewal, drug resistance, and tumorigenicity in prior studies. Associations between gene expression and PCa recurrence were confirmed by bootstrap internal validation and by external validation in independent cohorts (total N = 675) and in silico. siRNA knockdown and lentiviral overexpression were used to determine the effect of gene expression on PCa invasion, proliferation, and tumor growth. RESULTS Four candidate genes were differentially expressed in PCa recurrence. Of these, low AXIN2 expression was internally validated in the discovery cohort. Validation in external cohorts and in silico demonstrated that low AXIN2 was independently associated with more aggressive PCa, biochemical recurrence, and metastasis-free survival after RP. Functionally, siRNA-mediated depletion of AXIN2 significantly increased invasiveness, proliferation, and tumor growth. Conversely, ectopic overexpression of AXIN2 significantly reduced invasiveness, proliferation, and tumor growth. CONCLUSIONS Low AXIN2 expression was associated with PCa recurrence after RP in our test population as well as in external validation cohorts, and its expression levels in PCa cells significantly impacted invasiveness, proliferation, and tumor growth. Given these novel roles, further study of AXIN2 in PCa may yield promising new predictive and therapeutic strategies.
Collapse
Affiliation(s)
- Brian R. Hu
- USC Institute of Urology, Keck Medical Center of USC and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Adrian S. Fairey
- USC Institute of Urology, Keck Medical Center of USC and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Anisha Madhav
- Division of Medical Oncology, Department of Medicine, University of Southern California Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, Los Angeles, California
| | - Dongyun Yang
- Department of Preventive Medicine, Keck Medical Center of USC, University of Southern California, Los Angeles, California
| | - Meng Li
- Health Sciences Bioinformatics Core, USC Keck School of Medicine, Los Angeles, California
| | - Susan Groshen
- Department of Preventive Medicine, Keck Medical Center of USC, University of Southern California, Los Angeles, California
| | | | - Philip H. Kim
- USC Institute of Urology, Keck Medical Center of USC and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Navneet Virk
- Division of Medical Oncology, Department of Medicine, University of Southern California Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, Los Angeles, California
| | - Lina Wang
- Department of Pathology, Keck Medical Center of USC, University of Southern California, Los Angeles, California
| | - Sue Ellen Martin
- Department of Pathology, Keck Medical Center of USC, University of Southern California, Los Angeles, California
| | | | | | - Robert B. Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Robert B. Den
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Tong Xu
- Division of Medical Oncology, Department of Medicine, University of Southern California Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, Los Angeles, California
| | - Yucheng Xu
- Division of Medical Oncology, Department of Medicine, University of Southern California Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, Los Angeles, California
| | - Inderbir S. Gill
- USC Institute of Urology, Keck Medical Center of USC and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - David I. Quinn
- Division of Medical Oncology, Department of Medicine, University of Southern California Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, Los Angeles, California
| | - Amir Goldkorn
- Division of Medical Oncology, Department of Medicine, University of Southern California Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, Los Angeles, California
| |
Collapse
|
18
|
Strand DW, Aaron L, Henry G, Franco OE, Hayward SW. Isolation and analysis of discreet human prostate cellular populations. Differentiation 2016; 91:139-51. [PMID: 26546040 PMCID: PMC4854811 DOI: 10.1016/j.diff.2015.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 10/27/2015] [Indexed: 02/03/2023]
Abstract
The use of lineage tracing in transgenic mouse models has revealed an abundance of subcellular phenotypes responsible for maintaining prostate homeostasis. The ability to use fresh human tissues to examine the hypotheses generated by these mouse experiments has been greatly enhanced by technical advances in tissue processing, flow cytometry and cell culture. We describe in detail the optimization of protocols for each of these areas to facilitate research on solving human prostate diseases through the analysis of human tissue.
Collapse
Affiliation(s)
- Douglas W Strand
- Department of Urology, UT Southwestern University Medical Center, Dallas, TX, USA
| | - LaTayia Aaron
- Department of Cancer Biology, Meharry Medical College, Nashville, TN, USA
| | - Gervaise Henry
- Department of Urology, UT Southwestern University Medical Center, Dallas, TX, USA
| | - Omar E Franco
- Department of Surgery, NorthShore University Health System, Research Institute, Evanston, IL, USA
| | - Simon W Hayward
- Department of Surgery, NorthShore University Health System, Research Institute, Evanston, IL, USA.
| |
Collapse
|
19
|
Sanches BDA, Zani BC, Maldarine JS, Biancardi MF, Santos FCA, Góes RM, Vilamaior PSL, Taboga SR. Postnatal development of Mongolian gerbil female prostate: An immunohistochemical and 3D modeling study. Microsc Res Tech 2016; 79:438-46. [PMID: 26971884 DOI: 10.1002/jemt.22649] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/20/2016] [Indexed: 11/12/2022]
Abstract
The development of the prostate in male rodents, which involves complex epithelial-mesenchymal interactions between the urogenital sinus epithelium (UGE) and the urogenital sinus mesenchyme (UGM), has been deeply studied. In females, however, this process is not very clear. In this study, the postnatal development of the prostate in female Mongolian gerbils employing three-dimensional (3D) reconstructions, histochemical, and immunohistochemical techniques was characterized. It was observed that prostatic branching and differentiation in females was induced by a single mesenchyme localized at a ventrolateral position, which was named as ventrolateral mesenchyme (VLM); furthermore, the canalization of solid buds began on the third postnatal day (P3) and the branching morphogenesis on P5. We observed secretions in the acini at the end of the first month, and, on P45, the acini were completely differentiated. The strong cell proliferation phase in the first week coincided with the mesenchymal expression of estrogen receptor 1 (ESR1). The expression of androgen receptor (AR) paralleled cell differentiation, and, on P30, immunolabelling with p63 was restricted to basal cells. This study serves as a baseline parameter for future research on disruptions that could affect the development of the female prostate.
Collapse
Affiliation(s)
- Bruno D A Sanches
- Department of Structural and Functional Biology, State University of Campinas, Av. Bertrand Russel s/n, Campinas, São Paulo, Brazil
| | - Bruno C Zani
- Department of Biology, Laboratory of Microscopy and Microanalysis, University of Estadual Paulista - UNESP, Rua Cristovão Colombo, São Jose do Rio Preto, São Paulo, Brazil
| | - Juliana S Maldarine
- Department of Biology, Laboratory of Microscopy and Microanalysis, University of Estadual Paulista - UNESP, Rua Cristovão Colombo, São Jose do Rio Preto, São Paulo, Brazil
| | - Manoel F Biancardi
- Department of Morphology, Federal University of Goias, Samambaia II, Goiania, Goias, Brazil
| | - Fernanda C A Santos
- Department of Morphology, Federal University of Goias, Samambaia II, Goiania, Goias, Brazil
| | - Rejane M Góes
- Department of Biology, Laboratory of Microscopy and Microanalysis, University of Estadual Paulista - UNESP, Rua Cristovão Colombo, São Jose do Rio Preto, São Paulo, Brazil
| | - Patricia S L Vilamaior
- Department of Biology, Laboratory of Microscopy and Microanalysis, University of Estadual Paulista - UNESP, Rua Cristovão Colombo, São Jose do Rio Preto, São Paulo, Brazil
| | - Sebastião R Taboga
- Department of Biology, Laboratory of Microscopy and Microanalysis, University of Estadual Paulista - UNESP, Rua Cristovão Colombo, São Jose do Rio Preto, São Paulo, Brazil
| |
Collapse
|
20
|
Kawai Y, Kishimoto Y, Suzuki R, Tsuji T, Hiwatashi N, Tateya I, Yamamoto N, Nakamura T, Kanemaru SI, Hirano S. Distribution and characteristics of slow-cycling cells in rat vocal folds. Laryngoscope 2016; 126:E164-70. [PMID: 26845229 DOI: 10.1002/lary.25558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2015] [Indexed: 01/15/2023]
Abstract
OBJECTIVES/HYPOTHESIS Stem cells are known to proliferate at a slow rate in adult organs, and thus slow-cycling cells exhibiting pluripotency are considered tissue-specific stem cells in some organs. Slow-cycling cells in the vocal fold (VF) have not been well documented. Here we sought to clarify the distributions and characteristics of slow-cycling cells in rat VFs. METHODS We applied double-labeling technique to detect the distribution of slow-cycling cells. We injected the exogenous proliferation marker 5-bromo-2'-deoxyuridine (BrdU) into Sprague-Dawley rats. After a chasing period, VFs were immunostained with antibodies to BrdU and the second endogenous proliferation marker, Ki-67. BrdU (+) Ki-67(+) cells were regarded as slow-cycling cells and counted by VF regions. To reveal slow-cycling cells' characteristic, their immunophenotypes were histologically investigated and their kinetics in injured VFs were evaluated. RESULTS Most slow-cycling cells were detected in the basal layer of the epithelium. Slow-cycling cells in the epithelium displayed a low positive ratio of E-cadherin and CK5 and a high positive ratio of vimentin and CD31 as compared with the other epithelial cells. The expression of S100A4 was low in slow-cycling cells of the lamina propria and the macula flava. FGFR1, HAS1, HAS2, and HAS3 were not detected in the slow-cycling cells. A time-dependent reduction of slow-cycling cells was observed in injured VFs. CONCLUSION Most slow-cycling cells resided in the epithelium, exhibiting various phenotypes in a relatively undifferentiated condition, and they are suspected to contribute to the tissue repair of the injured VFs. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Yoshitaka Kawai
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yo Kishimoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryo Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuya Tsuji
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nao Hiwatashi
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ichiro Tateya
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norio Yamamoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tatsuo Nakamura
- Department of Bioartificial Organs, Institute for Frontier Medical Science, Kyoto University, Kyoto, Japan
| | - Sin-Ichi Kanemaru
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Otolaryngology-Head and Neck Surgery, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Strand DW, Goldstein AS. The many ways to make a luminal cell and a prostate cancer cell. Endocr Relat Cancer 2015; 22:T187-97. [PMID: 26307022 PMCID: PMC4893788 DOI: 10.1530/erc-15-0195] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2015] [Indexed: 12/16/2022]
Abstract
Research in the area of stem/progenitor cells has led to the identification of multiple stem-like cell populations implicated in prostate homeostasis and cancer initiation. Given that there are multiple cells that can regenerate prostatic tissue and give rise to prostate cancer, our focus should shift to defining the signaling mechanisms that drive differentiation and progenitor self-renewal. In this article, we will review the literature, present the evidence and raise important unanswered questions that will help guide the field forward in dissecting critical mechanisms regulating stem-cell differentiation and tumor initiation.
Collapse
Affiliation(s)
- Douglas W Strand
- Department of UrologyUniversity of Texas Southwestern, Dallas, Texas, USADepartment of Molecular and Medical PharmacologyDepartment of Urology, David Geffen School of Medicine, Broad Stem Cell Research Center, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| | - Andrew S Goldstein
- Department of UrologyUniversity of Texas Southwestern, Dallas, Texas, USADepartment of Molecular and Medical PharmacologyDepartment of Urology, David Geffen School of Medicine, Broad Stem Cell Research Center, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|
22
|
Liu JB, Dai CM, Su XY, Cao L, Qin R, Kong QB. Gene microarray assessment of multiple genes and signal pathways involved in androgen-dependent prostate cancer becoming androgen independent. Asian Pac J Cancer Prev 2015; 15:9791-5. [PMID: 25520106 DOI: 10.7314/apjcp.2014.15.22.9791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
To study the gene expression change and possible signal pathway during androgen-dependent prostate cancer (ADPC) becoming androgen-independent prostate cancer (AIPC), an LNCaP cell model of AIPC was established using flutamide in combination with androgen-free environment inducement, and differential expression genes were screened by microarray. Then the biological process, molecular function and KEGG pathway of differential expression genes are analyzed by Molecule Annotation System (MAS). By comparison of 12,207 expression genes, 347 expression genes were acquired, of which 156 were up-ragulated and 191 down-regulated. After analyzing the biological process and molecule function of differential expression genes, these genes are found to play crucial roles in cell proliferation, differntiation, cell cycle control, protein metabolism and modification and other biological process, serve as signal molecules, enzymes, peptide hormones, cytokines, cytoskeletal proteins and adhesion molecules. The analysis of KEGG show that the relevant genes of AIPC transformation participate in glutathione metabolism, cell cycle, P53 signal pathway, cytochrome P450 metabolism, Hedgehog signal pathway, MAPK signal pathway, adipocytokines signal pathway, PPAR signal pathway, TGF-β signal pathway and JAK-STAT signal pathway. In conclusion, during the process of ADPC becoming AIPC, it is not only one specific gene or pathway, but multiple genes and pathways that change. The findings above lay the foundation for study of AIPC mechanism and development of AIPC targeting drugs.
Collapse
Affiliation(s)
- Jun-Bao Liu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China E-mail :
| | | | | | | | | | | |
Collapse
|
23
|
Kwon OJ, Xin L. Prostate epithelial stem and progenitor cells. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2014; 2:209-218. [PMID: 25374923 PMCID: PMC4219311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/30/2014] [Indexed: 06/04/2023]
Abstract
The classic androgen ablation and replacement experiment demonstrates that prostate epithelia possess extensive regenerative capacities and implies the existence of the prostate stem/progenitor cells. These cells may serve as the cells of origin for prostate cancer and their intrinsic property may dictate the clinical behaviors of the resulting diseases. Therefore, detailed characterization of these cells will potentially benefit disease prevention, diagnosis and prognosis. In this review, we describe several major in vitro and in vivo approaches that have been employed in the studies of the prostate stem cell activities, summarize the major progress that has been made during the last two decades regarding the identity of prostate stem/progenitor cells and their niches, and discuss some remaining outstanding questions in the field.
Collapse
Affiliation(s)
- Oh-Joon Kwon
- Department of Molecular and Cellular Biology, Baylor College of MedicineUSA
| | - Li Xin
- Department of Molecular and Cellular Biology, Baylor College of MedicineUSA
- Department of Pathology and Immunology, Baylor College of MedicineUSA
- Dan L. Duncan Cancer Center, Baylor College of MedicineUSA
- Baylor College of MedicineOne Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
24
|
Stifter S, Dorđević G. Prostate cancer and new insights in angiogenesis. Front Oncol 2014; 4:243. [PMID: 25309869 PMCID: PMC4159983 DOI: 10.3389/fonc.2014.00243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/21/2014] [Indexed: 11/25/2022] Open
Affiliation(s)
- Sanja Stifter
- Department of Pathology, Faculty of Medicine, University of Rijeka , Rijeka , Croatia
| | - Gordana Dorđević
- Department of Pathology, Faculty of Medicine, University of Rijeka , Rijeka , Croatia
| |
Collapse
|