1
|
Lin L, Deng J, Peng J, Cui J, Wang L, Zhang M, Gao J, Li F, Shi Y, Lv M. Structural insights into the recognition of the A/T-rich motif in target gene promoters by the LMX1a homeobox domain. FEBS J 2024; 291:2792-2810. [PMID: 38465368 DOI: 10.1111/febs.17118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/16/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
LIM homeodomain transcription factor 1-alpha (LMX1a) is a neuronal lineage-specific transcription activator that plays an essential role during the development of midbrain dopaminergic (mDA) neurons. LMX1a induces the expression of multiple key genes, which ultimately determine the morphology, physiology, and functional identity of mDA neurons. This function of LMX1a is dependent on its homeobox domain. Here, we determined the structures of the LMX1a homeobox domain in complex with the promoter sequences of the Wnt family member 1 (WNT1) or paired like homeodomain 3 (Pitx3) gene, respectively. The complex structures revealed that the LMX1a homeobox domain employed its α3 helix and an N-terminal loop to achieve specific target recognition. The N-terminal loop (loop1) interacted with the minor groove of the double-stranded DNA (dsDNA), whereas the third α-helix (α3) was tightly packed into the major groove of the dsDNA. Structure-based mutations in the α3 helix of the homeobox domain significantly reduced the binding affinity of LMX1a to dsDNA. Moreover, we identified a nonsyndromic hearing loss (NSHL)-related mutation, R199, which yielded a more flexible loop and disturbed the recognition in the minor groove of dsDNA, consistent with the molecular dynamics (MD) simulations. Furthermore, overexpression of Lmx1a promoted the differentiation of SH-SY5Y cells and upregulated the transcription of WNT1 and PITX3 genes. Hence, our work provides a detailed elucidation of the specific recognition between the LMX1a homeobox domain and its specific dsDNA targets, which represents valuable information for future investigations of the functional pathways that are controlled by LMX1a during mDA neuron development.
Collapse
Affiliation(s)
- Liqing Lin
- Division of Life Sciences and Medicine, Hefei National Research Center for Cross Disciplinary Science, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, China
| | - Jie Deng
- Division of Life Sciences and Medicine, Hefei National Research Center for Cross Disciplinary Science, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, China
| | - Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Jing Cui
- Division of Life Sciences and Medicine, Hefei National Research Center for Cross Disciplinary Science, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, China
| | - Lei Wang
- Division of Life Sciences and Medicine, Hefei National Research Center for Cross Disciplinary Science, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, China
| | - Min Zhang
- Division of Life Sciences and Medicine, Hefei National Research Center for Cross Disciplinary Science, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, China
| | - Jia Gao
- Division of Life Sciences and Medicine, Hefei National Research Center for Cross Disciplinary Science, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, China
| | - Fudong Li
- Division of Life Sciences and Medicine, Hefei National Research Center for Cross Disciplinary Science, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, China
| | - Yunyu Shi
- Division of Life Sciences and Medicine, Hefei National Research Center for Cross Disciplinary Science, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, China
| | - Mengqi Lv
- Division of Life Sciences and Medicine, Hefei National Research Center for Cross Disciplinary Science, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, China
| |
Collapse
|
2
|
Zhang L, Yang H. Research progress of neural stem cells as a source of dopaminergic neurons for cell therapy in Parkinson's disease. Mol Biol Rep 2024; 51:347. [PMID: 38400887 DOI: 10.1007/s11033-024-09294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/29/2024] [Indexed: 02/26/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease, the most characteristic pathological feature is the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compactus (SNpc) of the mesencephalon, along with reduced dopamine content in the striatum. Researchers have been searching for drugs and therapies to treat PD in decades. However, no approach could stop the progression of the disease, and even some of them caused adverse clinical side effects. PD has a well-defined lesion. Therefore, it is considered to be one of the most curable central nervous system diseases by cell replacement treatment. Fetal ventral mesencephalic tissue transplantation has been used to treat patients with PD and obtained positive treatment results. However, ethical issues, such as limited donor tissue, and side effects including graft-induced dyskinesias, limit its clinical applications. Neural stem cell (NSC) transplantation is a viable therapy choice because it possesses multipotency, self-renewal ability, and differentiation into DA neurons, which may substitute for lost DA neurons and slow down the neurodegenerative process in PD. Studies that investigated the delivery of NSCs by using animal models of PD revealed survival, migration, and even amelioration of behavioral deficits. Here, the research progress of NSCs or NSC-derived DA neurons in treating PD was reviewed, and the practicability of present manufacturing processes for clinical testing was considered. This review is expected to offer ideas for practical strategies to solve the present technical and biological problems related to the clinical application of NSCs in PD.
Collapse
Affiliation(s)
- Lingling Zhang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, 555 East Youyi Road, Beilin District, Xi'an, 710054, China.
| | - Hao Yang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, 555 East Youyi Road, Beilin District, Xi'an, 710054, China
| |
Collapse
|
3
|
Ji X, Zhou S, Wang N, Wang J, Wu Y, Duan Y, Ni P, Zhang J, Yu S. Cerebral-Organoid-Derived Exosomes Alleviate Oxidative Stress and Promote LMX1A-Dependent Dopaminergic Differentiation. Int J Mol Sci 2023; 24:11048. [PMID: 37446226 DOI: 10.3390/ijms241311048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The remarkable advancements related to cerebral organoids have provided unprecedented opportunities to model human brain development and diseases. However, despite their potential significance in neurodegenerative diseases such as Parkinson's disease (PD), the role of exosomes from cerebral organoids (OExo) has been largely unknown. In this study, we compared the effects of OExo to those of mesenchymal stem cell (MSC)-derived exosomes (CExo) and found that OExo shared similar neuroprotective effects to CExo. Our findings showed that OExo mitigated H2O2-induced oxidative stress and apoptosis in rat midbrain astrocytes by reducing excess ROS production, antioxidant depletion, lipid peroxidation, mitochondrial dysfunction, and the expression of pro-apoptotic genes. Notably, OExo demonstrated superiority over CExo in promoting the differentiation of human-induced pluripotent stem cells (iPSCs) into dopaminergic (DA) neurons. This was attributed to the higher abundance of neurotrophic factors, including neurotrophin-4 (NT-4) and glial-cell-derived neurotrophic factor (GDNF), in OExo, which facilitated the iPSCs' differentiation into DA neurons in an LIM homeobox transcription factor 1 alpha (LMX1A)-dependent manner. Our study provides novel insight into the biological properties of cerebral organoids and highlights the potential of OExo in the treatment of neurodegenerative diseases such as PD.
Collapse
Affiliation(s)
- Xingrui Ji
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Shaocong Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Nana Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Jingwen Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yue Wu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yuhan Duan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Penghao Ni
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Jingzhong Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Shuang Yu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
4
|
Azeez IA, Awogbindin IO, Olayinka JN, Folarin RO, Adamu AS, Ior LD, Shehu AM, Mukhtar AI, Ajeigbe OF, Emokpae AO, Usende IL, Babatunde BR, Yusha'u Y, Olateju OI, Kamoga R, Benson AIO, Oparaji KC, Owemidu IO, Iliyasu MO, Imam MI, Olopade JO. Neural stem cell research in Africa: current realities and future prospects. Biol Open 2022; 11:280534. [PMID: 36326097 PMCID: PMC9641530 DOI: 10.1242/bio.059574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neural stem cells (NSCs) are immature progenitor cells that are found in developing and adult brains that have the potential of dividing actively and renewing themselves, with a complex form of gene expression. The generation of new brain cells in adult individuals was initially considered impossible, however, the landmark discovery of human neural stem cells in the hippocampus has been followed by further discoveries in other discreet regions of the brain. Investigation into the current state in Africa of the research and use of NSCs shows relatively limited activities on the continent. Information on the African application of NSCs for modelling disease mechanisms, drug discovery, and therapeutics is still limited. The International Brain Research Organization (IBRO)-African Regional Committee (ARC), with support from the Company of Biologists, and the Movement Disorder Society, sponsored the first African Basic School on NSC in Ibadan, Nigeria, with the vision of bringing together young neuroscientists and physicians across different fields in neuroscience to learn from leaders who have applied NSCs in stem cell research, the pathophysiology of neurodegenerative diseases, neuroanatomy, and neurotherapeutics. Twenty early-career researchers in academic institutions at junior and senior faculty cadres were selected from South Africa, Uganda and Nigeria. The students and organizer of the school, who wrote this review on the state of NSCs research in Africa, recommended the following: (1) other African countries can take a cue from South Africa and Nigeria in probing the phenomena of adult neurogenesis in unique animal species on the continent; (2) Africa should leverage the expertise and facilities of South African scientists and international collaborators in scaling up NSC research into these unique species and (3) Centers of Excellence should be established on the continent to serve as research hubs for training postgraduate students, and facilities for African scientists who trained overseas on NSCs.
Collapse
Affiliation(s)
- Idris A. Azeez
- Department of Veterinary Anatomy, University of Jos 1 , Jos, 930001 Nigeria
| | | | - Juliet N. Olayinka
- Department of Pharmacology and Therapeutics, Afe Babalola University 3 , Ado-Ekiti, 360001 Nigeria
| | - Royhaan O. Folarin
- Department of Anatomy, Olabisi Onabanjo University 4 , Ago-Iwoye, 120107 Nigeria
| | - Abubakar S. Adamu
- Department of Human Anatomy, Ahmadu Bello University 5 , Zaria, 810107 , Nigeria
| | - Lydia D. Ior
- Department of Pharmacology, University of Jos 6 , Jos, 930001 , Nigeria
| | - Asmau M. Shehu
- Department of Human Anatomy, Federal University Dutse 7 , Dutse, 720223 , Nigeria
- School of Anatomical Sciences, University of the Witwatersrand 8 , Johannesburg, Wits 2050 , South Africa
| | - Abubakar I. Mukhtar
- Department of Human Anatomy, Ahmadu Bello University 5 , Zaria, 810107 , Nigeria
| | - Olufunke F. Ajeigbe
- Elizade University, Ilara-Mokin, 340112 9 Department of Physical and Chemical Sciences, Biochemistry Programme , , Nigeria
| | | | - Ifukibot L. Usende
- Department of Veterinary Anatomy, University of Abuja 11 , Abuja, 900105 , Nigeria
| | | | - Yusuf Yusha'u
- Department of Human Physiology, Ahmadu Bello University 12 , Zaria, 810107 , Nigeria
| | - Oladiran I. Olateju
- School of Anatomical Sciences, University of the Witwatersrand 8 , Johannesburg, Wits 2050 , South Africa
| | - Ronald Kamoga
- Department of Pharmacology and Therapeutics, Mbarara University of Science and Technology 13 , Mbarara P.O. Box 1410 , Uganda
| | - Ayoola I. O. Benson
- Department of Human Anatomy, Elizade University, Ilara-Mokin 14 , Abakaliki, 482131 Nigeria
| | - Kenneth C. Oparaji
- Department of Physiology, Alex Ekwueme Federal University Ndufu-Alike 15 , Abakaliki, 482131 , Nigeria
| | - Idowu O. Owemidu
- Department of Physiology, Kogi State University 16 , Anyigba, 272102 , Nigeria
| | - Musa O. Iliyasu
- Department of Anatomy, Kogi State University 17 , Anyigba, 272102 , Nigeria
| | - Maryam I. Imam
- Department of Human Physiology, Ahmadu Bello University 12 , Zaria, 810107 , Nigeria
| | - James O. Olopade
- Department of Veterinary Anatomy, University of Ibadan 18 , Ibadan, 200005 , Nigeria
| |
Collapse
|
5
|
Li F, Zhang A, Li M, Wang X, Wang X, Guan Y, An J, Han D, Zhang YA, Chen Z. Induced neural stem cells from Macaca fascicularis show potential of dopaminergic neuron specification and efficacy in a mouse Parkinson's disease model. Acta Histochem 2022; 124:151927. [DOI: 10.1016/j.acthis.2022.151927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 11/01/2022]
|
6
|
Effect of NTN and Lmx1 α on the Notch Signaling Pathway during the Differentiation of Human Bone Marrow Mesenchymal Stem Cells into Dopaminergic Neuron-Like Cells. PARKINSONS DISEASE 2021; 2021:6676709. [PMID: 34373779 PMCID: PMC8349261 DOI: 10.1155/2021/6676709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/30/2021] [Accepted: 07/22/2021] [Indexed: 11/20/2022]
Abstract
Human bone marrow mesenchymal stem cells (h-BMSCs) have the potential to differentiate into dopaminergic neuron-like cells to treat Parkinson's disease. The Notch signaling pathway has been implicated in the regulation of cell fate decisions such as differentiation of BMSCs. This study investigated changes in the expression of Notch-related genes in the differentiation of BMSCs in vitro into dopaminergic (DA) neuron-like cells. BMSCs transfected with empty lentiviral vectors served as the control group and those transfected with NTN and Lmx1α recombinant lentiviral vectors served as the experimental group. After induction and culture of NTN and Lmx1α-transfected h-BMSCs for 21 days, the cells exhibited features of dopaminergic neuron-like cells, which were observed by transmission and scanning electron microscopy and verified by immunofluorescence of tyrosine hydroxylase (TH) and dopamine transporter (DAT). These induced cells could secrete dopamine and had basic action potentials. Expression of the neural stem cell (NSC) markers, including octamer-binding protein (Oct4), paired box gene 6 (Pax6), and sex determining region Y-box 1 (SOX1), increased on day 14 of induction and decreased on day 21 of induction during differentiation. The human Notch signaling pathway PCR array showed a differential expression of Notch-related genes during the differentiation of h-BMSCs into DA neuron-like cells in vitro relative to that in the control group. In conclusion, h-BMSCs overexpressing NTN and Lmx1α can successfully be induced to differentiate into dopaminergic neuron-like cells with a neuronal phenotype exhibiting fundamental biological functions in vitro, and NTN and Lmx1α may affect the expression of Notch-related genes during differentiation.
Collapse
|
7
|
Chlebanowska P, Sułkowski M, Skrzypek K, Tejchman A, Muszyńska A, Noroozi R, Majka M. Origin of the Induced Pluripotent Stem Cells Affects Their Differentiation into Dopaminergic Neurons. Int J Mol Sci 2020; 21:ijms21165705. [PMID: 32784894 PMCID: PMC7460973 DOI: 10.3390/ijms21165705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Neuronal differentiation of human induced pluripotent stem (iPS) cells, both in 2D models and 3D systems in vitro, allows for the study of disease pathomechanisms and the development of novel therapies. To verify if the origin of donor cells used for reprogramming to iPS cells can influence the differentiation abilities of iPS cells, peripheral blood mononuclear cells (PBMC) and keratinocytes were reprogrammed to iPS cells using the Sendai viral vector and were subsequently checked for pluripotency markers and the ability to form teratomas in vivo. Then, iPS cells were differentiated into dopaminergic neurons in 2D and 3D cultures. Both PBMC and keratinocyte-derived iPS cells were similarly reprogrammed to iPS cells, but they displayed differences in gene expression profiles and in teratoma compositions in vivo. During 3D organoid formation, the origin of iPS cells affected the levels of FOXA2 and LMX1A only in the first stages of neural differentiation, whereas in the 2D model, differences were detected at the levels of both early and late neural markers FOXA2, LMX1A, NURR1, TUBB and TH. To conclude, the origin of iPS cells may significantly affect iPS differentiation abilities in teratomas, as well as exerting effects on 2D differentiation into dopaminergic neurons and the early stages of 3D midbrain organoid formation.
Collapse
Affiliation(s)
- Paula Chlebanowska
- Jagiellonian University Medical College, Sw. Anny 12, 31-008 Kraków, Poland; (P.C.); (M.S.); (K.S.); (A.T.)
- Department of Transplantation, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Maciej Sułkowski
- Jagiellonian University Medical College, Sw. Anny 12, 31-008 Kraków, Poland; (P.C.); (M.S.); (K.S.); (A.T.)
- Department of Transplantation, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Klaudia Skrzypek
- Jagiellonian University Medical College, Sw. Anny 12, 31-008 Kraków, Poland; (P.C.); (M.S.); (K.S.); (A.T.)
- Department of Transplantation, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Anna Tejchman
- Jagiellonian University Medical College, Sw. Anny 12, 31-008 Kraków, Poland; (P.C.); (M.S.); (K.S.); (A.T.)
- Department of Transplantation, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Agata Muszyńska
- Bioinformatics Research Group, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland;
- Institute of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Rezvan Noroozi
- Human Genome Variation Research Group, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland;
| | - Marcin Majka
- Jagiellonian University Medical College, Sw. Anny 12, 31-008 Kraków, Poland; (P.C.); (M.S.); (K.S.); (A.T.)
- Department of Transplantation, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
- Correspondence: ; Tel.: +48-12-659-15-93
| |
Collapse
|
8
|
Chlebanowska P, Tejchman A, Sułkowski M, Skrzypek K, Majka M. Use of 3D Organoids as a Model to Study Idiopathic Form of Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21030694. [PMID: 31973095 PMCID: PMC7037292 DOI: 10.3390/ijms21030694] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 02/07/2023] Open
Abstract
Organoids are becoming particularly popular in modeling diseases that are difficult to reproduce in animals, due to anatomical differences in the structure of a given organ. Thus, they are a bridge between the in vitro and in vivo models. Human midbrain is one of the structures that is currently being intensively reproduced in organoids for modeling Parkinson’s disease (PD). Thanks to three-dimensional (3D) architecture and the use of induced pluripotent stem cells (iPSCs) differentiation into organoids, it has been possible to recapitulate a complicated network of dopaminergic neurons. In this work, we present the first organoid model for an idiopathic form of PD. iPSCs were generated from peripheral blood mononuclear cells of healthy volunteers and patients with the idiopathic form of PD by transduction with Sendai viral vector. iPSCs were differentiated into a large multicellular organoid-like structure. The mature organoids displayed expression of neuronal early and late markers. Interestingly, we observed statistical differences in the expression levels of LIM homeobox transcription factor alpha (early) and tyrosine hydroxylase (late) markers between organoids from PD patient and healthy volunteer. The obtained results show immense potential for the application of 3D human organoids in studying the neurodegenerative disease and modeling cellular interactions within the human brain.
Collapse
|
9
|
Erharter A, Rizzi S, Mertens J, Edenhofer F. Take the shortcut - direct conversion of somatic cells into induced neural stem cells and their biomedical applications. FEBS Lett 2019; 593:3353-3369. [PMID: 31663609 PMCID: PMC6916337 DOI: 10.1002/1873-3468.13656] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022]
Abstract
Second-generation reprogramming of somatic cells directly into the cell type of interest avoids induction of pluripotency and subsequent cumbersome differentiation procedures. Several recent studies have reported direct conversion of human somatic cells into stably proliferating induced neural stem cells (iNSCs). Importantly, iNSCs are easier, faster, and more cost-efficient to generate than induced pluripotent stem cells (iPSCs), and also have a higher level of clinical safety. Stably, self-renewing iNSCs can be derived from different cellular sources, such as skin fibroblasts and peripheral blood mononuclear cells, and readily differentiate into neuronal and glial lineages that are indistinguishable from their iPSC-derived counterparts or from NSCs isolated from primary tissues. This review focuses on the derivation and characterization of iNSCs and their biomedical applications. We first outline different approaches to generate iNSCs and then discuss the underlying molecular mechanisms. Finally, we summarize the preclinical validation of iNSCs to highlight that these cells are promising targets for disease modeling, autologous cell therapy, and precision medicine.
Collapse
Affiliation(s)
- Anita Erharter
- Department of Molecular Biology & CMBIGenomics, Stem Cell Biology & Regenerative MedicineLeopold‐Franzens‐University InnsbruckAustria
| | - Sandra Rizzi
- Department of Molecular Biology & CMBIGenomics, Stem Cell Biology & Regenerative MedicineLeopold‐Franzens‐University InnsbruckAustria
- Institute of PharmacologyMedical University InnsbruckAustria
| | - Jerome Mertens
- Department of Molecular Biology & CMBIGenomics, Stem Cell Biology & Regenerative MedicineLeopold‐Franzens‐University InnsbruckAustria
| | - Frank Edenhofer
- Department of Molecular Biology & CMBIGenomics, Stem Cell Biology & Regenerative MedicineLeopold‐Franzens‐University InnsbruckAustria
| |
Collapse
|
10
|
Yuan Y, Tang X, Bai YF, Wang S, An J, Wu Y, Xu ZQD, Zhang YA, Chen Z. Dopaminergic precursors differentiated from human blood-derived induced neural stem cells improve symptoms of a mouse Parkinson's disease model. Theranostics 2018; 8:4679-4694. [PMID: 30279731 PMCID: PMC6160767 DOI: 10.7150/thno.26643] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/09/2018] [Indexed: 11/18/2022] Open
Abstract
Autologous neural stem cells (NSCs) may offer a promising source for deriving dopaminergic (DA) cells for treatment of Parkinson's disease (PD). Methods: By using Sendai virus, human peripheral blood mononuclear cells (PBMNCs) were reprogrammed to induced NSCs (iNSCs), which were then differentiated to dopaminergic neurons in vitro. Whole-genome deep sequencing was performed to search for mutations that had accumulated during the reprogramming and expansion processes. To find the optimal differentiation stage of cells for transplantation, DA precursors obtained at various differentiation time points were tested by engraftment into brains of naïve immunodeficient mice. At last, the safety and efficacy of iNSC-derived DA precursors were tested by transplantation into the striatum of immunodeficient PD mouse models. Results: PBMNC-derived iNSCs showed similar characteristics to fetal NSCs, and were able to specifically differentiate to DA neurons with high efficiency in vitro. The sequencing data proved that no harmful SNVs, Indels and CNVs were generated during the reprogramming and expansion processes. DA precursors obtained between differentiation day 10 to 13 in vitro were most suitable for transplantation when a balanced graft survival and maturation were taken into account. Two weeks after transplantation of DA precursors into mouse PD models, the motor functions of PD mice started to improve, and continued to improve until the end of the experiments. No graft overgrowth or tumor was observed, and a significant number of A9-specific midbrain DA neurons were surviving in the striatum. Conclusion: This study confirmed the efficacy of iNSC-derived DA precursors in a mouse PD model, and emphasized the necessity of genomic sequencing and vigorous safety assessment before any clinical translation using iNSCs.
Collapse
|
11
|
López-León M, Outeiro TF, Goya RG. Cell reprogramming: Therapeutic potential and the promise of rejuvenation for the aging brain. Ageing Res Rev 2017; 40:168-181. [PMID: 28903069 DOI: 10.1016/j.arr.2017.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 08/27/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023]
Abstract
Aging is associated with a progressive increase in the incidence of neurodegenerative diseases, with Alzheimer's (AD) and Parkinson's (PD) disease being the most conspicuous examples. Within this context, the absence of efficacious therapies for most age-related brain pathologies has increased the interest in regenerative medicine. In particular, cell reprogramming technologies have ushered in the era of personalized therapies that not only show a significant potential for the treatment of neurodegenerative diseases but also promise to make biological rejuvenation feasible. We will first review recent evidence supporting the emerging view that aging is a reversible epigenetic phenomenon. Next, we will describe novel reprogramming approaches that overcome some of the intrinsic limitations of conventional induced-pluripotent-stem-cell technology. One of the alternative approaches, lineage reprogramming, consists of the direct conversion of one adult cell type into another by transgenic expression of multiple lineage-specific transcription factors (TF). Another strategy, termed pluripotency factor-mediated direct reprogramming, uses universal TF to generate epigenetically unstable intermediates able to differentiate into somatic cell types in response to specific differentiation factors. In the third part we will review studies showing the potential relevance of the above approaches for the treatment of AD and PD.
Collapse
Affiliation(s)
- Micaela López-León
- Institute for Biochemical Research (INIBIOLP) - Histology B & Pathology B, School of Medicine, National University of La Plata, La Plata, Argentina
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany; Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Rodolfo G Goya
- Institute for Biochemical Research (INIBIOLP) - Histology B & Pathology B, School of Medicine, National University of La Plata, La Plata, Argentina.
| |
Collapse
|
12
|
Tang Y, Yu P, Cheng L. Current progress in the derivation and therapeutic application of neural stem cells. Cell Death Dis 2017; 8:e3108. [PMID: 29022921 PMCID: PMC5682670 DOI: 10.1038/cddis.2017.504] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022]
Abstract
Neural stem cells (NSCs) have a unique role in neural regeneration. Cell therapy based on NSC transplantation is a promising tool for the treatment of nervous system diseases. However, there are still many issues and controversies associated with the derivation and therapeutic application of these cells. In this review, we summarize the different sources of NSCs and their derivation methods, including direct isolation from primary tissues, differentiation from pluripotent stem cells and transdifferentiation from somatic cells. We also review the current progress in NSC implantation for the treatment of various neural defects and injuries in animal models and clinical trials. Finally, we discuss potential optimization strategies for NSC derivation and propose urgent challenges to the clinical translation of NSC-based therapies in the near future.
Collapse
Affiliation(s)
- Yuewen Tang
- National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Institute of Haematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei Yu
- Department of Orthopaedics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Cheng
- National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Institute of Haematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Choi DH, Kim JH, Kim SM, Kang K, Han DW, Lee J. Therapeutic Potential of Induced Neural Stem Cells for Parkinson's Disease. Int J Mol Sci 2017; 18:E224. [PMID: 28117752 PMCID: PMC5297853 DOI: 10.3390/ijms18010224] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is a chronic, neurodegenerative disorder that results from the loss of cells in the substantia nigra (SN) which is located in the midbrain. However, no cure is available for PD. Recently, fibroblasts have been directly converted into induced neural stem cells (iNSCs) via the forced expression of specific transcription factors. Therapeutic potential of iNSC in PD has not been investigated yet. Here, we show that iNSCs directly converted from mouse fibroblasts enhanced functional recovery in an animal model of PD. The rotational behavior test was performed to assess recovery. Our results indicate that iNSC transplantation into the striatum of 6-hydroxydopamine (6-OHDA)-injected mice can significantly reduce apomorphine-induced rotational asymmetry. The engrafted iNSCs were able to survive in the striatum and migrated around the medial forebrain bundle and the SN pars compacta. Moreover, iNSCs differentiated into all neuronal lineages. In particular, the transplanted iNSCs that committed to the glial lineage were significantly increased in the striatum of 6-OHDA-injected mice. Engrafted iNSCs differentiated to dopaminergic (DA) neurons and migrated into the SN in the 6-OHDA lesion mice. Therefore, iNSC transplantation serves as a valuable tool to enhance the functional recovery in PD.
Collapse
Affiliation(s)
- Dong-Hee Choi
- Department of Medical Science, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
| | - Ji-Hye Kim
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
| | - Sung Min Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
| | - Kyuree Kang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
| | - Dong Wook Han
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
- Konkuk Univesity Open-Innovation Center, Institute of Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
- Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
| | - Jongmin Lee
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
- Department of Rehabilitation Medicine, Konkuk University School of Medicine, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
| |
Collapse
|
14
|
Conversion of adult human peripheral blood mononuclear cells into induced neural stem cell by using episomal vectors. Stem Cell Res 2016; 16:236-42. [DOI: 10.1016/j.scr.2016.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/29/2015] [Accepted: 01/14/2016] [Indexed: 12/19/2022] Open
|
15
|
Zhu B, Caldwell M, Song B. Development of stem cell-based therapies for Parkinson's disease. Int J Neurosci 2016; 126:955-62. [DOI: 10.3109/00207454.2016.1148034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Petersen GF, Strappe PM. Generation of diverse neural cell types through direct conversion. World J Stem Cells 2016; 8:32-46. [PMID: 26981169 PMCID: PMC4766249 DOI: 10.4252/wjsc.v8.i2.32] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/18/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
A characteristic of neurological disorders is the loss of critical populations of cells that the body is unable to replace, thus there has been much interest in identifying methods of generating clinically relevant numbers of cells to replace those that have been damaged or lost. The process of neural direct conversion, in which cells of one lineage are converted into cells of a neural lineage without first inducing pluripotency, shows great potential, with evidence of the generation of a range of functional neural cell types both in vitro and in vivo, through viral and non-viral delivery of exogenous factors, as well as chemical induction methods. Induced neural cells have been proposed as an attractive alternative to neural cells derived from embryonic or induced pluripotent stem cells, with prospective roles in the investigation of neurological disorders, including neurodegenerative disease modelling, drug screening, and cellular replacement for regenerative medicine applications, however further investigations into improving the efficacy and safety of these methods need to be performed before neural direct conversion becomes a clinically viable option. In this review, we describe the generation of diverse neural cell types via direct conversion of somatic cells, with comparison against stem cell-based approaches, as well as discussion of their potential research and clinical applications.
Collapse
|
17
|
Chen Z. Cell Therapy for Parkinson's Disease: New Hope from Reprogramming Technologies. Aging Dis 2015; 6:499-503. [PMID: 26618051 DOI: 10.14336/ad.2014.1201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 12/01/2014] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with the major pathology being the progressive loss of dopaminergic (DA) midbrain neurons in the substantia nigra. As early as in the 1980s, open-label clinical trials employing fetal ventral mesencephalon (fVM) tissues have demonstrated significant efficacy for PD treatment, which led to two NIH-sponsored double-blind placebo-controlled clinical trials. However, both trials showed only mild outcome. Retrospective analysis revealed several possible reasons that include patient selection, heterogeneity of grafts, immune recognition of grafts, lack of standardization of transplantation procedure and uneven distribution of grafts. Recent years have seen advances in reprogramming technologies which may provide solutions to the problems associated with fVM tissues. Induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs) hold promise for generating clinical grade DA neural cells that are safe, homogeneous, scalable and standardizable. These new technologies may bring back clinical trials using cell therapy for PD treatment in the future.
Collapse
Affiliation(s)
- Zhiguo Chen
- 1 Cell Therapy Center, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, 100053, China ; 2 Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China ; 3 Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
18
|
Cell fate determination, neuronal maintenance and disease state: The emerging role of transcription factors Lmx1a and Lmx1b. FEBS Lett 2015; 589:3727-38. [PMID: 26526610 DOI: 10.1016/j.febslet.2015.10.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/06/2015] [Accepted: 10/15/2015] [Indexed: 01/28/2023]
Abstract
LIM-homeodomain (LIM-HD) proteins are evolutionary conserved developmental transcription factors. LIM-HD Lmx1a and Lmx1b orchestrate complex temporal and spatial gene expression of the dopaminergic pathway, and evidence shows they are also involved in adult neuronal homeostasis. In this review, the multiple roles played by Lmx1a and Lmx1b will be discussed. Controlled Lmx1a and Lmx1b expression and activities ensure the proper formation of critical signaling centers, including the embryonic ventral mesencephalon floor plate and sharp boundaries between lineage-specific cells. Lmx1a and Lmx1b expression persists in mature dopaminergic neurons of the substantia nigra pars compacta and the ventral tegmental area, and their role in the adult brain is beginning to be revealed. Notably, LMX1B expression was lower in brain tissue affected by Parkinson's disease. Actual and future applications of Lmx1a and Lmx1b transcription factors in stem cell production as well as in direct conversion of fibroblast into dopaminergic neurons are also discussed. A thorough understanding of the role of LMX1A and LMX1B in a number of disease states, including developmental diseases, cancer and neurodegenerative diseases, could lead to significant benefits for human healthcare.
Collapse
|
19
|
Fu MH, Li CL, Lin HL, Chen PC, Calkins MJ, Chang YF, Cheng PH, Yang SH. Stem cell transplantation therapy in Parkinson's disease. SPRINGERPLUS 2015; 4:597. [PMID: 26543732 PMCID: PMC4628010 DOI: 10.1186/s40064-015-1400-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/06/2015] [Indexed: 02/06/2023]
Abstract
Ineffective therapeutic treatments and inadequate repair ability in the central nervous system are disturbing problems for several neurological diseases. Fortunately, the development of clinically applicable populations of stem cells has provided an avenue to overcome the failure of endogenous repair systems and substitute new cells into the damaged brain. However, there are still several existing obstacles to translating into clinical application. Here we review the stem-cell based therapies for Parkinson’s disease and discuss the potential advantages and drawbacks. We hope this review may provide suggestions for viable strategies to overcome the current technical and biological issues associated with the application of stem cells in Parkinson’s disease.
Collapse
Affiliation(s)
- Mu-Hui Fu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301 Taiwan
| | - Chia-Ling Li
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Hsiu-Lien Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan.,Division of Breeding and Genetics, Livestock Research Institute, Council of Agriculture, Tainan, 71246 Taiwan
| | - Pei-Chun Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Marcus J Calkins
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Yu-Fan Chang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Pei-Hsun Cheng
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Shang-Hsun Yang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| |
Collapse
|
20
|
Guibinga GH. MicroRNAs: tools of mechanistic insights and biological therapeutics discovery for the rare neurogenetic syndrome Lesch-Nyhan disease (LND). ADVANCES IN GENETICS 2015; 90:103-131. [PMID: 26296934 DOI: 10.1016/bs.adgen.2015.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs that modulate the translation of mRNA. They have emerged over the past few years as indispensable entities in the transcriptional regulation of genes. Their discovery has added additional layers of complexity to regulatory networks that control cellular homeostasis. Also, their dysregulated pattern of expression is now well demonstrated in myriad diseases and pathogenic processes. In the current review, we highlight the role of miRNAs in Lesch-Nyhan disease (LND), a rare neurogenetic syndrome caused by mutations in the purine metabolic gene encoding the hypoxanthine-guanine phosphoribosyltransferase (HPRT) enzyme. We describe how experimental and biocomputational approaches have helped to unravel genetic and signaling pathways that provide mechanistic understanding of some of the molecular and cellular basis of this ill-defined neurogenetic disorder. Through miRNA-based target predictions, we have identified signaling pathways that may be of significance in guiding biological therapeutic discovery for this incurable neurological disorder. We also propose a model to explain how a gene such as HPRT, mostly known for its housekeeping metabolic functions, can have pleiotropic effects on disparate genes and signal transduction pathways. Our hypothetical model suggests that HPRT mRNA transcripts may be acting as competitive endogenous RNAs (ceRNAs) intertwined in multiregulatory cross talk between key neural transcripts and miRNAs. Overall, this approach of using miRNA-based genomic approaches to elucidate the molecular and cellular basis of LND and guide biological target identification might be applicable to other ill-defined rare inborn-error metabolic diseases.
Collapse
Affiliation(s)
- Ghiabe-Henri Guibinga
- Division of Genetics, Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Wang S, Zou C, Fu L, Wang B, An J, Song G, Wu J, Tang X, Li M, Zhang J, Yue F, Zheng C, Chan P, Zhang YA, Chen Z. Autologous iPSC-derived dopamine neuron transplantation in a nonhuman primate Parkinson's disease model. Cell Discov 2015; 1:15012. [PMID: 27462412 PMCID: PMC4860772 DOI: 10.1038/celldisc.2015.12] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 04/17/2015] [Indexed: 12/24/2022] Open
Abstract
Autologous dopamine (DA) neurons are a new cell source for replacement therapy of Parkinson's disease (PD). In this study, we tested the safety and efficacy of autologous induced pluripotent stem cell (iPSC)-derived DA cells for treatment of a cynomolgus monkey PD model. Monkey bone marrow mesenchymal cells were isolated and induced to iPSCs, followed by differentiation into DA cells using a method with high efficiency. Autologous DA cells were introduced into the brain of a cynomolgus monkey PD model without immunosuppression; three PD monkeys that had received no grafts served as controls. The PD monkey that had received autologous grafts experienced behavioral improvement compared with that of controls. Histological analysis revealed no overgrowth of grafts and a significant number of surviving A9 region-specific graft-derived DA neurons. The study provided a proof-of-principle to employ iPSC-derived autologous DA cells for PD treatment using a nonhuman primate PD model.
Collapse
Affiliation(s)
- Shuyan Wang
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital,
Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of
Education, Beijing,
China
- Center of Neural Injury and Repair, Beijing Institute for Brain
Disorders, Beijing,
China
- Center of Parkinson's Disease, Beijing Institute for Brain
Disorders, Beijing,
China
| | - Chunlin Zou
- Center for Translational Medicine, Guangxi Medical
University, Nanning,
China
| | - Linlin Fu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital,
Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of
Education, Beijing,
China
| | - Bin Wang
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital,
Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of
Education, Beijing,
China
| | - Jing An
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital,
Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of
Education, Beijing,
China
| | - Gongru Song
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital,
Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of
Education, Beijing,
China
| | - Jianyu Wu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital,
Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of
Education, Beijing,
China
| | - Xihe Tang
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital,
Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of
Education, Beijing,
China
| | - Mo Li
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital,
Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of
Education, Beijing,
China
| | - Jian Zhang
- Center for Translational Medicine, Guangxi Medical
University, Nanning,
China
| | - Feng Yue
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu
Hosptial, Capital Medical University, Beijing, China
| | - Chengyun Zheng
- Department of Hematology, Second Hospital of Shandong
University, Jinan,
China
| | - Piu Chan
- Center of Parkinson's Disease, Beijing Institute for Brain
Disorders, Beijing,
China
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu
Hosptial, Capital Medical University, Beijing, China
| | - Y Alex Zhang
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital,
Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of
Education, Beijing,
China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital,
Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of
Education, Beijing,
China
- Center of Neural Injury and Repair, Beijing Institute for Brain
Disorders, Beijing,
China
- Center of Parkinson's Disease, Beijing Institute for Brain
Disorders, Beijing,
China
| |
Collapse
|