1
|
Azevedo-Pereira RL, Manley NC, Dong C, Zhang Y, Lee AG, Zatulovskaia Y, Gupta V, Vu J, Han S, Berry JE, Bliss TM, Steinberg GK. Decoding the molecular crosstalk between grafted stem cells and the stroke-injured brain. Cell Rep 2023; 42:112353. [PMID: 37043353 PMCID: PMC10562513 DOI: 10.1016/j.celrep.2023.112353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/25/2023] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
Stem cell therapy shows promise for multiple disorders; however, the molecular crosstalk between grafted cells and host tissue is largely unknown. Here, we take a step toward addressing this question. Using translating ribosome affinity purification (TRAP) with sequencing tools, we simultaneously decode the transcriptomes of graft and host for human neural stem cells (hNSCs) transplanted into the stroke-injured rat brain. Employing pathway analysis tools, we investigate the interactions between the two transcriptomes to predict molecular pathways linking host and graft genes; as proof of concept, we predict host-secreted factors that signal to the graft and the downstream molecular cascades they trigger in the graft. We identify a potential host-graft crosstalk pathway where BMP6 from the stroke-injured brain induces graft secretion of noggin, a known brain repair factor. Decoding the molecular interplay between graft and host is a critical step toward deciphering the molecular mechanisms of stem cell action.
Collapse
Affiliation(s)
| | - Nathan C Manley
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Chen Dong
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Yue Zhang
- Stanford Genetics Bioinformatics Service Center, Stanford University, Stanford, CA 94305, USA
| | - Alex G Lee
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Yulia Zatulovskaia
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Varun Gupta
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Jennifer Vu
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Summer Han
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Jack E Berry
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Tonya M Bliss
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Maric D, Jahanipour J, Li XR, Singh A, Mobiny A, Van Nguyen H, Sedlock A, Grama K, Roysam B. Whole-brain tissue mapping toolkit using large-scale highly multiplexed immunofluorescence imaging and deep neural networks. Nat Commun 2021; 12:1550. [PMID: 33692351 PMCID: PMC7946933 DOI: 10.1038/s41467-021-21735-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Mapping biological processes in brain tissues requires piecing together numerous histological observations of multiple tissue samples. We present a direct method that generates readouts for a comprehensive panel of biomarkers from serial whole-brain slices, characterizing all major brain cell types, at scales ranging from subcellular compartments, individual cells, local multi-cellular niches, to whole-brain regions from each slice. We use iterative cycles of optimized 10-plex immunostaining with 10-color epifluorescence imaging to accumulate highly enriched image datasets from individual whole-brain slices, from which seamless signal-corrected mosaics are reconstructed. Specific fluorescent signals of interest are isolated computationally, rejecting autofluorescence, imaging noise, cross-channel bleed-through, and cross-labeling. Reliable large-scale cell detection and segmentation are achieved using deep neural networks. Cell phenotyping is performed by analyzing unique biomarker combinations over appropriate subcellular compartments. This approach can accelerate pre-clinical drug evaluation and system-level brain histology studies by simultaneously profiling multiple biological processes in their native anatomical context.
Collapse
Affiliation(s)
- Dragan Maric
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA.
| | - Jahandar Jahanipour
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA
- Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA
| | - Xiaoyang Rebecca Li
- Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA
| | - Aditi Singh
- Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA
| | - Aryan Mobiny
- Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA
| | - Hien Van Nguyen
- Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA
| | - Andrea Sedlock
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA
| | - Kedar Grama
- Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA
| | - Badrinath Roysam
- Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
3
|
Gancheva MR, Kremer KL, Gronthos S, Koblar SA. Using Dental Pulp Stem Cells for Stroke Therapy. Front Neurol 2019; 10:422. [PMID: 31110489 PMCID: PMC6501465 DOI: 10.3389/fneur.2019.00422] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/08/2019] [Indexed: 12/26/2022] Open
Abstract
Stroke is a leading cause of permanent disability world-wide, but aside from rehabilitation, there is currently no clinically-proven pharmaceutical or biological agent to improve neurological disability. Cell-based therapies using stem cells, such as dental pulp stem cells, are a promising alternative for treatment of neurological diseases, including stroke. The ischaemic environment in stroke affects multiple cell populations, thus stem cells, which act through cellular and molecular mechanisms, are promising candidates. The most common stem cell population studied in the neurological setting has been mesenchymal stem cells due to their accessibility. However, it is believed that neural stem cells, the resident stem cell of the adult brain, would be most appropriate for brain repair. Using reprogramming strategies, alternative sources of neural stem and progenitor cells have been explored. We postulate that a cell of closer origin to the neural lineage would be a promising candidate for reprogramming and modification towards a neural stem or progenitor cell. One such candidate population is dental pulp stem cells, which reside in the root canal of teeth. This review will focus on the neural potential of dental pulp stem cells and their investigations in the stroke setting to date, and include an overview on the use of different sources of neural stem cells in preclinical studies and clinical trials of stroke.
Collapse
Affiliation(s)
- Maria R. Gancheva
- Stroke Research Programme Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Karlea L. Kremer
- Stroke Research Programme Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Simon A. Koblar
- Stroke Research Programme Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Central Adelaide Local Health Network, Adelaide, SA, Australia
| |
Collapse
|
4
|
Zhang L, Tao W, Feng H, Chen Y. Transcriptional and Genomic Targets of Neural Stem Cells for Functional Recovery after Hemorrhagic Stroke. Stem Cells Int 2017; 2017:2412890. [PMID: 28133486 PMCID: PMC5241497 DOI: 10.1155/2017/2412890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/21/2016] [Indexed: 01/27/2023] Open
Abstract
Hemorrhagic stroke is a life-threatening disease characterized by a sudden rupture of cerebral blood vessels, and it is widely believed that neural cell death occurs after exposure to blood metabolites or subsequently damaged cells. Neural stem cells (NSCs), which maintain neurogenesis and are found in subgranular zone and subventricular zone, are thought to be an endogenous neuroprotective mechanism for these brain injuries. However, due to the complexity of NSCs and their microenvironment, current strategies cannot satisfactorily enhance functional recovery after hemorrhagic stroke. It is well known that transcriptional and genomic pathways play important roles in ensuring the normal functions of NSCs, including proliferation, migration, differentiation, and neural reconnection. Recently, emerging evidence from the use of new technologies such as next-generation sequencing and transcriptome profiling has provided insight into our understanding of genomic function and regulation of NSCs. In the present article, we summarize and present the current data on the control of NSCs at both the transcriptional and genomic levels. Using bioinformatics methods, we sought to predict novel therapeutic targets of endogenous neurogenesis and exogenous NSC transplantation for functional recovery after hemorrhagic stroke, which could also advance our understanding of its pathophysiology.
Collapse
Affiliation(s)
- Le Zhang
- College of Computer and Information Science, Southwest University, Chongqing, China
| | - Wenjing Tao
- College of Computer and Information Science, Southwest University, Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|