1
|
Stevanovic M, Lazic A, Schwirtlich M, Stanisavljevic Ninkovic D. The Role of SOX Transcription Factors in Ageing and Age-Related Diseases. Int J Mol Sci 2023; 24:851. [PMID: 36614288 PMCID: PMC9821406 DOI: 10.3390/ijms24010851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
The quest for eternal youth and immortality is as old as humankind. Ageing is an inevitable physiological process accompanied by many functional declines that are driving factors for age-related diseases. Stem cell exhaustion is one of the major hallmarks of ageing. The SOX transcription factors play well-known roles in self-renewal and differentiation of both embryonic and adult stem cells. As a consequence of ageing, the repertoire of adult stem cells present in various organs steadily declines, and their dysfunction/death could lead to reduced regenerative potential and development of age-related diseases. Thus, restoring the function of aged stem cells, inducing their regenerative potential, and slowing down the ageing process are critical for improving the health span and, consequently, the lifespan of humans. Reprograming factors, including SOX family members, emerge as crucial players in rejuvenation. This review focuses on the roles of SOX transcription factors in stem cell exhaustion and age-related diseases, including neurodegenerative diseases, visual deterioration, chronic obstructive pulmonary disease, osteoporosis, and age-related cancers. A better understanding of the molecular mechanisms of ageing and the roles of SOX transcription factors in this process could open new avenues for developing novel strategies that will delay ageing and prevent age-related diseases.
Collapse
Affiliation(s)
- Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Andrijana Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Marija Schwirtlich
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | | |
Collapse
|
2
|
Liu Z, Zheng W, Liu Y, Zhou B, Zhang Y, Wang F. Targeting HSPA8 inhibits proliferation via downregulating BCR-ABL and enhances chemosensitivity in imatinib-resistant chronic myeloid leukemia cells. Exp Cell Res 2021; 405:112708. [PMID: 34157313 DOI: 10.1016/j.yexcr.2021.112708] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022]
Abstract
The resistance to tyrosine kinase inhibitors is currently a major problem for chronic myeloid leukemia (CML) treatment and HSPA8 is highly expressed and a hallmark of poor prognosis in several human cancers. However, its role in imatinib-resistant CML (IR-CML) cells remains undetermined. Here, we determined HSPA8 was overexpressed in IR-CML cells and associated with imatinib resistance. HSPA8 ablation could downregulate BCR-ABL/STAT5 and BCR-ABL/AKT signaling pathways, dramatically induce proliferation inhibition, autophagy, G0/G1 phase cell cycle arrest but not apoptosis in IR-CML cells. Significantly, HSPA8 ablation enhanced the antitumor activity of imatinib via promoting apoptosis in vitro and vivo. These findings unraveled that HSPA8 ablation inhibits proliferation via downregulating BCR-ABL and enhances chemosensitivity of imatinib in IR-CML cells, which investigate the role and molecular mechanism of HSPA8 in IR-CML cells and suggest that HSPA8 may be a potential target for IR-CML treatment.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China.
| | - Wenlong Zheng
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, PR China
| | - Yuan Liu
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Binghe Zhou
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, PR China
| | - Yuqing Zhang
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, PR China
| | - Fan Wang
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, PR China
| |
Collapse
|
3
|
Tusa I, Cheloni G, Poteti M, Silvano A, Tubita A, Lombardi Z, Gozzini A, Caporale R, Scappini B, Dello Sbarba P, Rovida E. In Vitro Comparison of the Effects of Imatinib and Ponatinib on Chronic Myeloid Leukemia Progenitor/Stem Cell Features. Target Oncol 2020; 15:659-671. [PMID: 32780298 PMCID: PMC7568716 DOI: 10.1007/s11523-020-00741-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background The development of molecularly tailored therapeutic agents such as the BCR/ABL-active tyrosine kinase inhibitors (TKi) resulted in an excellent treatment option for chronic myeloid leukemia (CML) patients. However, following TKi discontinuation, disease relapses in 40–60% of patients, an occurrence very likely due to the persistence of leukemic stem cells that are scarcely sensitive to TKi. Nevertheless, TKi are still the only current treatment option for CML patients. Objective The aim of this study was to compare the effects of TKi belonging to different generations, imatinib and ponatinib (first and third generation, respectively), on progenitor/stem cell expansion potential and markers. Patients and Methods We used stabilized CML cell lines (KCL22, K562 and LAMA-84 cells), taking advantage of the previous demonstration of ours that cell lines contain cell subsets endowed with progenitor/stem cell properties. Primary cells explanted from CML patients were also used. The effects of TKi on the expression of stem cell related genes were compared by quantitative PCR. Flow cytometry was performed to evaluate aldehyde-dehydrogenase (ALDH) activity and the expression of cluster of differentiation (CD) cell surface hematopoietic stem cell markers. Progenitor/stem cell potential was estimated by serial colony formation ability (CFA) assay. Results Ponatinib was more effective than imatinib for the reduction of cells with ALDH activity and progenitor/stem cell potential of CML patient-derived cells and cell lines. Furthermore, ponatinib was more effective than imatinib in reducing the percentage of CD26-expressing cells in primary CML cells, whereas imatinib and ponatinib showed similar efficacy on KCL22 cells. Both drugs strongly upregulated NANOG and SOX2 in CML cell lines, but in KCL22 cells this upregulation was significantly lower with ponatinib than with imatinib, an outcome compatible with a lower level of enrichment of the stem cell compartment upon ponatinib treatment. Conclusion Ponatinib seems to target CML progenitor/stem cells better than imatinib. Electronic supplementary material The online version of this article (10.1007/s11523-020-00741-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ignazia Tusa
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Giulia Cheloni
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Martina Poteti
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Angela Silvano
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Alessandro Tubita
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Zoe Lombardi
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | | | - Roberto Caporale
- Dipartimento DAI Oncologico e di Chirurgia ad Indirizzo Robotico SOD Centro Diagnostico di Citofluorimetria e Immunoterapia, AOU Careggi, Florence, Italy
| | | | - Persio Dello Sbarba
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy.
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy.
| |
Collapse
|
4
|
Willig JB, Vianna DRB, Beckenkamp A, Beckenkamp LR, Sévigny J, Wink MR, Buffon A, Pilger DA. Imatinib mesylate affects extracellular ATP catabolism and expression of NTPDases in a chronic myeloid leukemia cell line. Purinergic Signal 2020; 16:29-40. [PMID: 31955347 PMCID: PMC7166234 DOI: 10.1007/s11302-019-09686-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/29/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm, characterized by the occurrence of the t(9;22)(q34;q11) translocation. First-line therapy for CML consists of treatment with imatinib mesylate, which selectively inhibits the BCR-ABL protein by competing for its ATP-binding site. Adenine nucleotide signaling is modulated by the ectonucleotidases and this pathway is related to tumorigenic processes. Considering the relationship between ATP and cancer, we aimed to evaluate the influence of imatinib mesylate on the expressions and functions of the NTPDase and ecto-5'-nucleotidase (CD73) enzymes in imatinib-sensitive and -resistant K-562 cell lines. mRNA analysis showed that K-562 cells express all ENTPDs and NT5E. However, when treated with imatinib mesylate for 24 h, the expression of ENTPD1, -2, -3 and -5 increased, leading to a higher nucleotides hydrolysis rate. HPLC analysis identified increased ATP degradation in cells after 24 h of treatment, with consequent ADP and AMP formation, corroborating the increase in gene and protein expression of ectonucleotidases as observed in previous results. On the other hand, we observed that imatinib-resistant K-562 cells presented a decrease in nucleotide hydrolysis and expressions of ENTPD1 and -5. These results suggest an involvement of imatinib in modulating ectonucleotidases in CML that will need further investigation. Since these ectonucleotidases have important catalytic activities in the tumor microenvironment, their modulation in CML cells may represent an important therapeutic approach to regulate levels of extracellular adenine nucleotides.
Collapse
Affiliation(s)
- Julia Biz Willig
- Faculty of Farmacy, Program for Post-graduation in Pharmaceutical Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratory of Biochemical and Cytological Analyses, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Bairro Santana, Porto Alegre, Rio Grande do Sul, CEP 90610-000, Brazil
| | - Débora Renz Barreto Vianna
- Faculty of Farmacy, Program for Post-graduation in Pharmaceutical Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratory of Biochemical and Cytological Analyses, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Bairro Santana, Porto Alegre, Rio Grande do Sul, CEP 90610-000, Brazil
| | - Aline Beckenkamp
- Faculty of Farmacy, Program for Post-graduation in Pharmaceutical Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Liziane Raquel Beckenkamp
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jean Sévigny
- Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Université Laval, Quebec, QC, Canada
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC, Canada
| | - Márcia Rosângela Wink
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andréia Buffon
- Faculty of Farmacy, Program for Post-graduation in Pharmaceutical Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Diogo André Pilger
- Faculty of Farmacy, Program for Post-graduation in Pharmaceutical Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
- Laboratory of Biochemical and Cytological Analyses, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Bairro Santana, Porto Alegre, Rio Grande do Sul, CEP 90610-000, Brazil.
| |
Collapse
|
5
|
Sensitivity to imatinib of KCL22 chronic myeloid leukemia cell survival/growth and stem cell potential under glucose shortage. Data Brief 2018; 20:1901-1904. [PMID: 30294641 PMCID: PMC6168789 DOI: 10.1016/j.dib.2018.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/25/2018] [Accepted: 09/17/2018] [Indexed: 11/21/2022] Open
Abstract
The data presented here are related to the original research article entitled “Imatinib enhances the maintenance of Chronic Myeloid Leukemia (CML) stem cell potential in the absence of glucose” (Bono et al., 2018). The sensitivity to the tyrosine kinase inhibitor imatinib-mesylate (IM) of KCL22 CML cells cultured under glucose shortage have been determined by scoring cell survival/growth via trypan blue exclusion and stem cell potential via Culture Repopulation Ability (CRA) assay. Discussion of the data can be found in Bono et al. (2018).
Collapse
|
6
|
Small benzothiazole molecule induces apoptosis and prevents metastasis through DNA interaction and c-MYC gene supression in diffuse-type gastric adenocarcinoma cell line. Chem Biol Interact 2018; 294:118-127. [DOI: 10.1016/j.cbi.2018.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022]
|