1
|
Jothi D, Kulka LAM. Strategies for modeling aging and age-related diseases. NPJ AGING 2024; 10:32. [PMID: 38987252 PMCID: PMC11237002 DOI: 10.1038/s41514-024-00161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
The ability to reprogram patient-derived-somatic cells to IPSCs (Induced Pluripotent Stem Cells) has led to a better understanding of aging and age-related diseases like Parkinson's, and Alzheimer's. The established patient-derived disease models mimic disease pathology and can be used to design drugs for aging and age-related diseases. However, the age and genetic mutations of the donor cells, the employed reprogramming, and the differentiation protocol might often pose challenges in establishing an appropriate disease model. In this review, we will focus on the various strategies for the successful reprogramming and differentiation of patient-derived cells to disease models for aging and age-related diseases, emphasizing the accuracy in the recapitulation of disease pathology and ways to overcome the limitations of its potential application in cell replacement therapy and drug development.
Collapse
Affiliation(s)
- D Jothi
- Department of Biochemistry II, Friedrich Schiller University, Jena, Germany.
| | | |
Collapse
|
2
|
Paul SK, Oshima M, Patil A, Sone M, Kato H, Maezawa Y, Kaneko H, Fukuyo M, Rahmutulla B, Ouchi Y, Tsujimura K, Nakanishi M, Kaneda A, Iwama A, Yokote K, Eto K, Takayama N. Retrotransposons in Werner syndrome-derived macrophages trigger type I interferon-dependent inflammation in an atherosclerosis model. Nat Commun 2024; 15:4772. [PMID: 38858384 PMCID: PMC11164933 DOI: 10.1038/s41467-024-48663-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/07/2024] [Indexed: 06/12/2024] Open
Abstract
The underlying mechanisms of atherosclerosis, the second leading cause of death among Werner syndrome (WS) patients, are not fully understood. Here, we establish an in vitro co-culture system using macrophages (iMφs), vascular endothelial cells (iVECs), and vascular smooth muscle cells (iVSMCs) derived from induced pluripotent stem cells. In co-culture, WS-iMφs induces endothelial dysfunction in WS-iVECs and characteristics of the synthetic phenotype in WS-iVSMCs. Transcriptomics and open chromatin analysis reveal accelerated activation of type I interferon signaling and reduced chromatin accessibility of several transcriptional binding sites required for cellular homeostasis in WS-iMφs. Furthermore, the H3K9me3 levels show an inverse correlation with retrotransposable elements, and retrotransposable element-derived double-stranded RNA activates the DExH-box helicase 58 (DHX58)-dependent cytoplasmic RNA sensing pathway in WS-iMφs. Conversely, silencing type I interferon signaling in WS-iMφs rescues cell proliferation and suppresses cellular senescence and inflammation. These findings suggest that Mφ-specific inhibition of type I interferon signaling could be targeted to treat atherosclerosis in WS patients.
Collapse
Affiliation(s)
- Sudip Kumar Paul
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Motohiko Oshima
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Masamitsu Sone
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Hibernation Metabolism, Physiology and Development Group, Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Hisaya Kato
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiyori Kaneko
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuo Ouchi
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kyoko Tsujimura
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Koji Eto
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
| | - Naoya Takayama
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
3
|
Yoneda Y, Kato H, Maezawa Y, Yokote K, Nakanishi M. Real-time imaging of human endothelial-to-hematopoietic transition in vitro using pluripotent stem cell derived hemogenic endothelium. Biophys Physicobiol 2024; 21:e211015. [PMID: 39175869 PMCID: PMC11339020 DOI: 10.2142/biophysico.bppb-v21.s015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/19/2024] [Indexed: 08/24/2024] Open
Abstract
During embryogenesis, human hematopoietic stem cells (HSCs) first emerge in the aorta-gonad-mesonephros (AGM) region via transformation of specialized hemogenic endothelial (HE) cells into premature HSC precursors. This process is termed endothelial-to-hematopoietic transition (EHT), in which the HE cells undergo drastic functional and morphological changes from flat, anchorage-dependent endothelial cells to free-floating round hematopoietic cells. Despite its essential role in human HSC development, molecular mechanisms underlying the EHT are largely unknown. This is due to lack of methods to visualize the emergence of human HSC precursors in real time in contrast to mouse and other model organisms. In this study, by inducing HE from human pluripotent stem cells in feeder-free monolayer cultures, we achieved real-time observation of the human EHT in vitro. By continuous observation and single-cell tracking in the culture, it was possible to visualize a process that a single endothelial cell gives rise to a hematopoietic cell and subsequently form a hematopoietic-cell cluster. The EHT was also confirmed by a drastic HE-to-HSC switching in molecular marker expressions. Notably, HSC precursor emergence was not linked to asymmetric cell division, whereas the hematopoietic cell cluster was formed through proliferation and assembling of the floating cells after the EHT. These results reveal unappreciated dynamics in the human EHT, and we anticipate that our human EHT model in vitro will provide an opportunity to improve our understanding of the human HSC development.
Collapse
Affiliation(s)
- Yuriko Yoneda
- Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.
| | - Hisaya Kato
- Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.
| | - Yoshiro Maezawa
- Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.
| | - Koutaro Yokote
- Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.
| | - Mio Nakanishi
- Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.
| |
Collapse
|
4
|
Kaneko H, Maezawa Y, Tsukagoshi‐Yamaguchi A, Koshizaka M, Takada‐Watanabe A, Nakamura R, Funayama S, Aono K, Teramoto N, Sawada D, Maeda Y, Minamizuka T, Hayashi A, Ide K, Ide S, Shoji M, Kitamoto T, Takemoto M, Kato H, Yokote K. Sex differences in symptom presentation and their impact on diagnostic accuracy in Werner syndrome. Geriatr Gerontol Int 2024; 24:161-167. [PMID: 38062994 PMCID: PMC11503585 DOI: 10.1111/ggi.14752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024]
Abstract
AIM Whether sex differences exist in hereditary progeroid syndromes remains unclear. In this study, we investigated sex differences in patients with Werner syndrome (WS), a model of human aging, using patient data at the time of diagnosis. METHODS The presence of six cardinal signs in the diagnostic criteria was retrospectively evaluated. RESULTS We found that the percentage of patients with all cardinal signs was higher in males than in females (54.2% vs. 21.2%). By the age of 40 years, 57.1% of male patients with WS presented with all the cardinal signs, whereas none of the female patients developed all of them. In particular, the frequency of having a high-pitched, hoarse voice, a characteristic of WS, was lower in female patients. The positive and negative predictive values for clinical diagnosis were 100% for males and females, indicating the helpfulness of diagnostic criteria regardless of sex. More female patients than male (86.7% vs. 64%) required genetic testing for their diagnosis because their clinical symptoms were insufficient, suggesting the importance of genetic testing for females even if they do not show typical symptoms of WS. Finally, the frequency of abnormal voice was lower in patients with WS harboring the c.3139-1G > C homozygous mutation. CONCLUSION These results indicate, for the first time, that there are sex differences in the phenotypes of hereditary progeroid syndromes. The analysis of this mechanism in this human model of aging may lead to the elucidation of sex differences in the various symptoms of normal human aging. Geriatr Gerontol Int 2024; 24: 161-167.
Collapse
Affiliation(s)
- Hiyori Kaneko
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Yoshiro Maezawa
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Ayano Tsukagoshi‐Yamaguchi
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Masaya Koshizaka
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Aki Takada‐Watanabe
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Rito Nakamura
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Shinichiro Funayama
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Kazuto Aono
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Naoya Teramoto
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Daisuke Sawada
- Department of PediatricsChiba University Graduate School of MedicineChibaJapan
| | - Yukari Maeda
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Takuya Minamizuka
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Aiko Hayashi
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Kana Ide
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Shintaro Ide
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Mayumi Shoji
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Takumi Kitamoto
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Minoru Takemoto
- Department of DiabetesMetabolism and Endocrinology, International University of Health and WelfareChibaJapan
| | - Hisaya Kato
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| | - Koutaro Yokote
- Department of EndocrinologyHematology and Gerontology, Chiba University Graduate School of MedicineChibaJapan
| |
Collapse
|
5
|
Maeda Y, Koshizaka M, Shoji M, Kaneko H, Kato H, Maezawa Y, Kawashima J, Yoshinaga K, Ishikawa M, Sekiguchi A, Motegi SI, Nakagami H, Yamada Y, Tsukamoto S, Taniguchi A, Sugimoto K, Takami Y, Shoda Y, Hashimoto K, Yoshimura T, Kogure A, Suzuki D, Okubo N, Yoshida T, Watanabe K, Kuzuya M, Takemoto M, Oshima J, Yokote K. Renal dysfunction, malignant neoplasms, atherosclerotic cardiovascular diseases, and sarcopenia as key outcomes observed in a three-year follow-up study using the Werner Syndrome Registry. Aging (Albany NY) 2023; 15:3273-3294. [PMID: 37130431 PMCID: PMC10449280 DOI: 10.18632/aging.204681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/15/2023] [Indexed: 05/04/2023]
Abstract
Werner syndrome is an adult-onset progeria syndrome that results in various complications. This study aimed to clarify the profile and secular variation of the disease. Fifty-one patients were enrolled and registered in the Werner Syndrome Registry. Their data were collected annually following registration. A cross-sectional analysis at registration and a longitudinal analysis between the baseline and each subsequent year was performed. Pearson's chi-squared and Wilcoxon signed-rank tests were used. Malignant neoplasms were observed from the fifth decade of life (mean onset: 49.7 years) and were observed in approximately 30% of patients during the 3-year survey period. Regarding renal function, the mean estimated glomerular filtration rate calculated from serum creatinine (eGFRcre) and eGFRcys, which were calculated from cystatin C in the first year, were 98.3 and 83.2 mL/min/1.73 m2, respectively, and differed depending on the index used. In longitudinal analysis, the average eGFRcre for the first and fourth years was 74.8 and 63.4 mL/min/1.73 m2, showing a rapid decline. Secular changes in Werner syndrome in multiple patients were identified. The prevalence of malignant neoplasms is high, and renal function may decline rapidly. It is, therefore, necessary to carry out active and detailed examinations and pay attention to the type and dose of the drugs used.
Collapse
Affiliation(s)
- Yukari Maeda
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaya Koshizaka
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Mayumi Shoji
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiyori Kaneko
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hisaya Kato
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Junji Kawashima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kayo Yoshinaga
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mai Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akiko Sekiguchi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hironori Nakagami
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshihiko Yamada
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Atami Hospital, International University of Health and Welfare, Atami, Japan
| | - Shinji Tsukamoto
- Department of Orthopaedic Surgery, Nara Medical University, Nara, Japan
| | - Akira Taniguchi
- Department of Orthopaedic Surgery, Nara Medical University, Nara, Japan
| | - Ken Sugimoto
- General Geriatric Medicine, Kawasaki Medical School, Okayama, Japan
| | - Yoichi Takami
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yukiko Shoda
- Department of Dermatology, Sumitomo Hospital, Osaka, Japan
| | - Kunihiko Hashimoto
- Department of Endocrinology and Metabolic Medicine, Nippon Life Hospital, Osaka, Japan
| | - Toru Yoshimura
- Diabetes and Endocrinology, Saga-Ken Medical Centre Koseikan, Saga, Japan
| | - Asako Kogure
- Department of Dermatology, Showa General Hospital, Tokyo, Japan
| | - Daisuke Suzuki
- Department of Dermatology, Showa General Hospital, Tokyo, Japan
| | - Naoki Okubo
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takashi Yoshida
- Department of Orthopaedic Surgery, North Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuhisa Watanabe
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Minoru Takemoto
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, International University of Health and Welfare, Narita, Japan
| | - Junko Oshima
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Koutaro Yokote
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
6
|
Research on Werner Syndrome: Trends from Past to Present and Future Prospects. Genes (Basel) 2022; 13:genes13101802. [PMID: 36292687 PMCID: PMC9601476 DOI: 10.3390/genes13101802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
A rare and autosomal recessive premature aging disorder, Werner syndrome (WS) is characterized by the early onset of aging-associated diseases, including shortening stature, alopecia, bilateral cataracts, skin ulcers, diabetes, osteoporosis, arteriosclerosis, and chromosomal instability, as well as cancer predisposition. WRN, the gene responsible for WS, encodes DNA helicase with a 3′ to 5′ exonuclease activity, and numerous studies have revealed that WRN helicase is involved in the maintenance of chromosome stability through actions in DNA, e.g., DNA replication, repair, recombination, and epigenetic regulation via interaction with DNA repair factors, telomere-binding proteins, histone modification enzymes, and other DNA metabolic factors. However, although these efforts have elucidated the cellular functions of the helicase in cell lines, they have not been linked to the treatment of the disease. Life expectancy has improved for WS patients over the past three decades, and it is hoped that a fundamental treatment for the disease will be developed. Disease-specific induced pluripotent stem (iPS) cells have been established, and these are expected to be used in drug discovery and regenerative medicine for WS patients. In this article, we review trends in research to date and present some perspectives on WS research with regard to the application of pluripotent stem cells. Furthermore, the elucidation of disease mechanisms and drug discovery utilizing the vast amount of scientific data accumulated to date will be discussed.
Collapse
|
7
|
Hsu TY, Hsu LN, Chen SY, Juang BT. MUT-7 Provides Molecular Insight into the Werner Syndrome Exonuclease. Cells 2021; 10:cells10123457. [PMID: 34943966 PMCID: PMC8700014 DOI: 10.3390/cells10123457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 11/24/2022] Open
Abstract
Werner syndrome (WS) is a rare recessive genetic disease characterized by premature aging. Individuals with this disorder develop normally during childhood, but their physiological conditions exacerbate the aging process in late adolescence. WS is caused by mutation of the human WS gene (WRN), which encodes two main domains, a 3′-5′ exonuclease and a 3′-5′ helicase. Caenorhabditis elegans expresses human WRN orthologs as two different proteins: MUT-7, which has a 3′-5′ exonuclease domain, and C. elegans WRN-1 (CeWRN-1), which has only helicase domains. These unique proteins dynamically regulate olfactory memory in C. elegans, providing insight into the molecular roles of WRN domains in humans. In this review, we specifically focus on characterizing the function of MUT-7 in small interfering RNA (siRNA) synthesis in the cytoplasm and the roles of siRNA in directing nuclear CeWRN-1 loading onto a heterochromatin complex to induce negative feedback regulation. Further studies on the different contributions of the 3′-5′ exonuclease and helicase domains in the molecular mechanism will provide clues to the accelerated aging processes in WS.
Collapse
Affiliation(s)
- Tsung-Yuan Hsu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
- Department of Cell and Tissue Biology, University of California, 513 Parnassus, San Francisco, CA 94143, USA
| | - Ling-Nung Hsu
- Occupational Safety and Health Office, Fu Jen Catholic University Hospital, New Taipei City 243, Taiwan;
| | - Shih-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan;
| | - Bi-Tzen Juang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan
- Correspondence:
| |
Collapse
|
8
|
Kato H, Maezawa Y. Atherosclerosis and Cardiovascular Diseases in Progeroid Syndromes. J Atheroscler Thromb 2021; 29:439-447. [PMID: 34511576 PMCID: PMC9100459 DOI: 10.5551/jat.rv17061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) and Werner syndrome (WS) are two of the representative genetic progeroid syndromes and have been widely studied in the field of aging research. HGPS is a pediatric disease in which premature aging symptoms appear in early childhood, and death occurs at an average age of 14.5 years, mainly due to cardiovascular disease (CVD). Conversely, WS patients exhibit accelerated aging phenotypes after puberty and die in their 50s due to CVD and malignant tumors. Both diseases are models of human aging, leading to a better understanding of the aging-associated development of CVD. In this review, we discuss the pathogenesis and treatment of atherosclerotic diseases presented by both progeroid syndromes with the latest findings.
Collapse
Affiliation(s)
- Hisaya Kato
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital
| |
Collapse
|