1
|
Bayarsaikhan D, Bayarsaikhan G, Kang HA, Lee SB, Han SH, Okano T, Kim K, Lee B. A Study on iPSC-Associated Factors in the Generation of Hepatocytes. Tissue Eng Regen Med 2024; 21:1245-1254. [PMID: 39495460 PMCID: PMC11589077 DOI: 10.1007/s13770-024-00674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/20/2024] [Accepted: 09/13/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Hepatocytes are an attractive cell source in hepatic tissue engineering because they are the primary cells of the liver, maintaining liver homeostasis through their intrinsic function. Due to the increasing demand for liver donors, a wide range of methods are being studied to obtain functionally active hepatocytes. iPSCs are one of the alternative cell sources, which shows great promise as a tool for generating hepatocytes. METHODS This study determined whether factors associated with iPSCs contributed to variation in hepatocyte-like cells derived from iPSCs. The factors of concern for the iPSCs included the culture system, the source of iPSCs, and cell seeding density for initiating the differentiation. RESULTS Our results found iPSC-dependent variances among differentiated hepatocyte-like cells. The matrix used in culturing iPSCs significantly impacts cell morphologies, characteristics, and the expression of pluripotent genes, such as OCT4 and SOX2, varied in iPSCs derived from different sources. These characteristics, in turn, play a consequential role in determining the functional activity of the iPSC-derived hepatocyte-like cells. In addition, cell seeding density was observed to be an essential factor for the efficient generation of iPSC-derived hepatocyte-like cells, with 2- 4 × 10 cells/cm of seeding density resulting in good morphology and functionality. CONCLUSION This study provides the baseline of effective differentiation protocols for iPSC-derived hepatocyte-like cells with the appropriate conditions, including cell culture media, iPSC source, and the seeding density of iPSCs.
Collapse
Affiliation(s)
- Delger Bayarsaikhan
- Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 406-840, Republic of Korea
| | - Govigerel Bayarsaikhan
- Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 406-840, Republic of Korea
| | - Hyun A Kang
- Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 406-840, Republic of Korea
| | - Su Bin Lee
- Department of Biomedical Engineering, Jungwon University, 85 Munmu-Ro, Goesan-Eup, Goesan-Gun, Chuncheongbuk-do, 28023, Republic of Korea
| | - So Hee Han
- Department of Biomedical Engineering, Jungwon University, 85 Munmu-Ro, Goesan-Eup, Goesan-Gun, Chuncheongbuk-do, 28023, Republic of Korea
| | - Teruo Okano
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawa-da-cho, Shinjuku-ku, Tokyo, 1628666, Japan
| | - Kyungsook Kim
- Department of Biomedical Engineering, Jungwon University, 85 Munmu-Ro, Goesan-Eup, Goesan-Gun, Chuncheongbuk-do, 28023, Republic of Korea.
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA.
| | - Bonghee Lee
- Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 406-840, Republic of Korea.
| |
Collapse
|
2
|
Mousavi Mirkalaei S, Farivar S. Systematic optimization of culture media for maintenance of human induced pluripotent stem cells using the response surface methodology. Heliyon 2024; 10:e32558. [PMID: 38975108 PMCID: PMC11226774 DOI: 10.1016/j.heliyon.2024.e32558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
The application of human induced pluripotent stem cells (hiPSCs) provides tremendous opportunities in cell therapy. However, culturing these cells faces many practical challenges, including costs associated with cell culture media and the optimization of cell culture conditions. Providing an optimized culture platform for hiPSCs to maintain pluripotency and self-renewal and generate cost-effective and robust therapeutics is an immediate requirement. This study used the design of experiments and the response surface methodology, a powerful statistical tool, to generate empirical models for predicting the optimal culture conditions of the hiPSCs. Pluripotency and cell proliferation were applied as read-outs to determine the optimal concentration of basic fibroblast growth factor (bFGF) and cell density. One model was defined to predict pluripotency and cell proliferation in terms of the predictor variables of the bFGF concentration and cell seeding density. Predicted culture conditions to maximize maintaining cell pluripotency were successfully validated. The present study's findings provide a novel approach that can potentially allow controllable hiPSC culture routine in translational research.
Collapse
Affiliation(s)
- Seyedmilad Mousavi Mirkalaei
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shirin Farivar
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
3
|
Qatan AAI, Tanbara S, Inamori M, Fukumori K, Kino–oka M. Spatial heterogeneity analysis of seeding of human induced pluripotent stem cells for neuroectodermal differentiation. Regen Ther 2024; 26:922-931. [PMID: 39508058 PMCID: PMC11539164 DOI: 10.1016/j.reth.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Preparing a uniform cell population in high-density seeding of adherent human induced pluripotent stem cells (hiPSC) requires stable culture conditions and consistent culture operation. In this study, we evaluated cell distribution patterns by changing cell seeding operations and their impact on differentiation toward the neuroectodermal lineage. Methods The hiPSC line 201B7 was seeded at 1.23 × 105 cells/cm2 following a conventional operation, prolongated time of cell seeding suspension or vessel tilting during cell seeding operation. Fluorescent imaging of cell nuclei was performed 24 h following cell seeding and used for spatial heterogeneity analysis. Flow cytometric analysis was also performed seven days after cell differentiation induction toward neuroectodermal lineage. Results Indices for spatial heterogeneity following high-density cell seeding were proposed to assess cell distribution patterns. Global heterogeneity (H G) was shown to be mostly affected by vessel tilting during cell seeding operation, while local heterogeneity (H L) was affected by prolongated time of cell seeding suspension. Changes in both spatial heterogeneities in the hiPSC population resulted in a lower yield of target neuroectodermal cells compared with the control operation. Conclusion High-density hiPSC seeding is critical for achieving a higher yield of target cells of neuroectodermal lineage. Understanding the spatial heterogeneity in early stages detects errors in cell culture motion and predicts cell fate in later stages of cell culture.
Collapse
Affiliation(s)
- Ali Ahmed Issa Qatan
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2–1 Yamadaoka, Suita, Osaka 565–0871, Japan
| | - Shinji Tanbara
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2–1 Yamadaoka, Suita, Osaka 565–0871, Japan
| | - Masakazu Inamori
- Cell Manufacturing Systems Engineering (Healios) Joint Research Chair, Graduate School of Engineering, Osaka University, 2–1 Yamadaoka, Suita, Osaka 565–0871, Japan
| | - Kazuhiro Fukumori
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2–1 Yamadaoka, Suita, Osaka 565–0871, Japan
| | - Masahiro Kino–oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2–1 Yamadaoka, Suita, Osaka 565–0871, Japan
- Cell Manufacturing Systems Engineering (Healios) Joint Research Chair, Graduate School of Engineering, Osaka University, 2–1 Yamadaoka, Suita, Osaka 565–0871, Japan
- Research Base for Cell Manufacturability, TechnoArena, Graduate School of Engineering, Osaka University, 2–1 Yamadaoka, Suita, Osaka 565–0871, Japan
| |
Collapse
|
4
|
Kim MH, Thanuthanakhun N, Kino-oka M. Stable and efficient generation of functional iPSC-derived neural progenitor cell rosettes through regulation of collective cell-cell behavior. Front Bioeng Biotechnol 2024; 11:1269108. [PMID: 38268936 PMCID: PMC10806250 DOI: 10.3389/fbioe.2023.1269108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
Although the potential of stem cells to differentiate into several cell types has shown promise in regenerative medicine, low differentiation efficiency and poor reproducibility significantly limit their practical application. We developed an effective and robust differentiation strategy for the efficient and robust generation of neural progenitor cell rosettes from induced pluripotent stem cells (iPSCs) incorporating botulinum hemagglutinin (HA). Treatment with HA suppressed the spontaneous differentiation of iPSCs cultured under undirected differentiation conditions, resulting in the preservation of their pluripotency. Moreover, treatment with HA during neural progenitor differentiation combined with dual SMAD inhibition generated a highly homogeneous population of PAX6-and SOX1-expressing neural progenitor cells with 8.4-fold higher yields of neural progenitor cells than untreated control cultures. These neural progenitor cells formed radially organized rosettes surrounding the central lumen. This differentiation method enhanced the generation of functional iPSC-derived neural progenitor cell rosettes throughout the culture vessel, suggesting that the regulation of collective cell-cell behavior using HA plays a morphogenetically important role in rosette formation and maturation. These findings show the significance of HA in the suppression of spontaneous differentiation through spatial homogeneity. The study proposes a novel methodology for the efficient derivation of functional iPSC-derived neural progenitor cell rosettes.
Collapse
Affiliation(s)
- Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | | | - Masahiro Kino-oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
- Research Base for Cell Manufacturability, Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Yu C, Zhang M, Xiong Y, Wang Q, Wang Y, Wu S, Hussain S, Wang Y, Zhang Z, Rao N, Zhang S, Zhang X. Comparison of miRNA transcriptome of exosomes in three categories of somatic cells with derived iPSCs. Sci Data 2023; 10:616. [PMID: 37696871 PMCID: PMC10495316 DOI: 10.1038/s41597-023-02493-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023] Open
Abstract
Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) through epigenetic manipulation. While the essential role of miRNA in reprogramming and maintaining pluripotency is well studied, little is known about the functions of miRNA from exosomes in this context. To fill this research gap,we comprehensively obtained the 17 sets of cellular mRNA transcriptomic data with 3.93 × 1010 bp raw reads and 18 sets of exosomal miRNA transcriptomic data with 2.83 × 107 bp raw reads from three categories of human somatic cells: peripheral blood mononuclear cells (PBMCs), skin fibroblasts(SFs) and urine cells (UCs), along with their derived iPSCs. Additionally, differentially expressed molecules of each category were identified and used to perform gene set enrichment analysis. Our study provides sets of comparative transcriptomic data of cellular mRNA and exosomal miRNA from three categories of human tissue with three individual biological controls in studies of iPSCs generation, which will contribute to a better understanding of donor cell variation in functional epigenetic regulation and differentiation bias in iPSCs.
Collapse
Affiliation(s)
- Chunlai Yu
- University of Electronic Science and Technology of China, Chengdu, Sichuang, China
| | - Mei Zhang
- Binzhou Medical University, Yantai, Shandong, China
| | - Yucui Xiong
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Qizheng Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yuanhua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Shaoling Wu
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sajjad Hussain
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Zhizhong Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Nini Rao
- University of Electronic Science and Technology of China, Chengdu, Sichuang, China.
| | - Sheng Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
| | - Xiao Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Kim MH, Thanuthanakhun N, Kino-Oka M. Novel strategy to improve hepatocyte differentiation stability through synchronized behavior-driven mechanical memory of iPSCs. Biotechnol Bioeng 2023; 120:593-607. [PMID: 36369977 DOI: 10.1002/bit.28285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
Cellular homeostasis is assumed to be regulated by the coordination of dynamic behaviors. Lack of efficient methods for synchronizing large quantities of cells makes studying cell culture strategies for bioprocess development challenging. Here, we demonstrate a novel application of botulinum hemagglutinin (HA), an E-cadherin function-blocking agent, to synchronize behavior-driven mechanical memory in human induced pluripotent stem cell (hiPSC) cultures. Application of HA to hiPSCs resulted in a decrease in actin bundling and disruption of colony formation in a concentration-and time-dependent manner. Interestingly, cytoskeleton rearrangement in cells with prolonged exposure to HA resulted in mechanical memory synchronization with Yes-associated protein, which increased pluripotent cell homogeneity. Synchronized hiPSCs have higher capability to differentiate into functional hepatocytes than unsynchronized hiPSCs, resulting in improved efficiency and robustness of hepatocyte differentiation. Thus, our strategy for cell behavior synchronization before differentiation induction provides an approach against the instability of differentiation of pluripotent cells.
Collapse
Affiliation(s)
- Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Naruchit Thanuthanakhun
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan.,Research Base for Cell Manufacturability, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
7
|
Thanuthanakhun N, Kim MH, Kino-oka M. Cell Behavioral Dynamics as a Cue in Optimizing Culture Stabilization in the Bioprocessing of Pluripotent Stem Cells. Bioengineering (Basel) 2022; 9:669. [PMID: 36354580 PMCID: PMC9687444 DOI: 10.3390/bioengineering9110669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 04/23/2024] Open
Abstract
Pluripotent stem cells (PSCs) are important for future regenerative medicine therapies. However, in the production of PSCs and derivatives, the control of culture-induced fluctuations in the outcome of cell quality remains challenging. A detailed mechanistic understanding of how PSC behaviors are altered in response to biomechanical microenvironments within a culture is necessary for rational bioprocessing optimization. In this review, we discuss recent insights into the role of cell behavioral and mechanical homeostasis in modulating the states and functions of PSCs during culture processes. We delineate promising ways to manipulate the culture variability through regulating cell behaviors using currently developed tools. Furthermore, we anticipate their potential implementation for designing a culture strategy based on the concept of Waddington's epigenetic landscape that may provide a feasible solution for tuning the culture quality and stability in the bioprocessing space.
Collapse
Affiliation(s)
- Naruchit Thanuthanakhun
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Masahiro Kino-oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
- Research Base for Cell Manufacturability, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| |
Collapse
|