1
|
Alowaysi M, Al-Shehri M, Badkok A, Attas H, Aboalola D, Baadhaim M, Alzahrani H, Daghestani M, Zia A, Al-Ghamdi K, Al-Ghamdi A, Zakri S, Aouabdi S, Tegner J, Alsayegh K. Generation of iPSC lines (KAIMRCi003A, KAIMRCi003B) from a Saudi patient with Dravet syndrome carrying homozygous mutation in the CPLX1 gene and heterozygous mutation in SCN9A. Hum Cell 2024; 37:502-510. [PMID: 38110787 PMCID: PMC10890977 DOI: 10.1007/s13577-023-01016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023]
Abstract
The most prevalent form of epileptic encephalopathy is Dravet syndrome (DRVT), which is triggered by the pathogenic variant SCN1A in 80% of cases. iPSCs with different SCN1A mutations have been constructed by several groups to model DRVT syndrome. However, no studies involving DRVT-iPSCs with rare genetic variants have been conducted. Here, we established two DRVT-iPSC lines harboring a homozygous mutation in the CPLX1 gene and heterozygous mutation in SCN9A gene. Therefore, the derivation of these iPSC lines provides a unique cellular platform to dissect the molecular mechanisms underlying the cellular dysfunctions consequent to CPLX1 and SCN9A mutations.
Collapse
Affiliation(s)
- Maryam Alowaysi
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Mohammad Al-Shehri
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Amani Badkok
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Hanouf Attas
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Doaa Aboalola
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Moayad Baadhaim
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Hajar Alzahrani
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Mustafa Daghestani
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- Department of Pathology and Laboratory Medicine, Ministry of the National Guard-Health Affairs, Jeddah, Saudi Arabia
| | - Asima Zia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Khalid Al-Ghamdi
- Forensic Laboratories, Criminal Evidence Department, Jeddah, Saudi Arabia
| | - Asayil Al-Ghamdi
- Forensic Laboratories, Criminal Evidence Department, Jeddah, Saudi Arabia
| | - Samer Zakri
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Sihem Aouabdi
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Jesper Tegner
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Khaled Alsayegh
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.
| |
Collapse
|
2
|
Alowaysi M, Al-Shehri M, Baadhaim M, AlZahrani H, Aboalola D, Daghestani M, Hashem H, Aljahdali R, Salem R, Alharbi A, Muharraq M, Alghamdi K, Alsobiy F, Zia A, Lehmann R, Tegner J, Alsayegh K. Generation of myoglobin (MB)-knockout human embryonic stem cell (hESC) line (KAIMRCe002-A-1S) using CRISPR/Cas9 technology. Stem Cell Res 2023; 71:103158. [PMID: 37406498 DOI: 10.1016/j.scr.2023.103158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/30/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023] Open
Abstract
Myoglobin (MB) is a cytoplasmic hemoprotein that is predominantly expressed in the heart and oxidative myofibers of skeletal muscle. It has been demonstrated that MB binds to oxygen and promotes its diffusion for energy production in the mitochondria. Recently, MB was found to be expressed in different forms of malignant tumors and cancer cell lines. Further studies using gene disruption technology will enhance the understanding of MB's role in human cardiovascular biology and cancers. Here, we describe the generation of a homozygous MB knockout in human embryonic stem cells (hESC-MB-/-) via CRISPR/Cas9 to study MB function in human biology and diseases.
Collapse
Affiliation(s)
- Maryam Alowaysi
- King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Mohammad Al-Shehri
- King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Moayad Baadhaim
- King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Hajar AlZahrani
- King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Doaa Aboalola
- King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Mustafa Daghestani
- King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Jeddah, Saudi Arabia; Department of Pathology and Laboratory Medicine, Ministry of the National Guard - Health Affairs, Jeddah, Saudi Arabia
| | - Heba Hashem
- Department of Pathology and Laboratory Medicine, Ministry of the National Guard - Health Affairs, Jeddah, Saudi Arabia
| | - Rawan Aljahdali
- Department of Pathology and Laboratory Medicine, Ministry of the National Guard - Health Affairs, Jeddah, Saudi Arabia
| | - Rayan Salem
- Department of Pathology and Laboratory Medicine, Ministry of the National Guard - Health Affairs, Jeddah, Saudi Arabia
| | - Adel Alharbi
- Forensic Laboratories, Criminal Evidence Department, Jeddah, Saudi Arabia
| | - Mohammed Muharraq
- Forensic Laboratories, Criminal Evidence Department, Jeddah, Saudi Arabia
| | - Khaled Alghamdi
- Forensic Laboratories, Criminal Evidence Department, Jeddah, Saudi Arabia
| | - Fawaz Alsobiy
- Forensic Laboratories, Criminal Evidence Department, Jeddah, Saudi Arabia
| | - Asima Zia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Robert Lehmann
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jesper Tegner
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Khaled Alsayegh
- King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Jeddah, Saudi Arabia.
| |
Collapse
|
3
|
Zhou Q, Li Z, Duan H. iPSC-Derived Corneal Endothelial Cells. Handb Exp Pharmacol 2023; 281:257-276. [PMID: 36882600 DOI: 10.1007/164_2023_644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The corneal endothelium is the innermost monolayer of the cornea that maintains corneal transparency and thickness. However, adult human corneal endothelial cells (CECs) possess limited proliferative capacity, and injuries can only be repaired by migration and enlargement of resident cells. When corneal endothelial cell density is lower than the critical level (400-500 cells/mm2) due to disease or trauma, corneal endothelial dysfunction will occur and lead to corneal edema. Corneal transplantation remains the most effective clinical treatment therapy but is limited by the global shortage of healthy corneal donors. Recently, researchers have developed several alternative strategies for the treatment of corneal endothelial disease, including the transplantation of cultured human CECs and artificial corneal endothelial replacement. Early-stage results show that these strategies can effectively resolve corneal edema and restore corneal clarity and thickness, but the long-term efficacy and safety remain to be further validated. Induced pluripotent stem cells (iPSCs) represent an ideal cell source for the treatment and drug discovery of corneal endothelial diseases, which can avoid the ethical-related and immune-related problems of human embryonic stem cells (hESCs). At present, many approaches have been developed to induce the differentiation of corneal endothelial-like cells from human induced pluripotent stem cells (hiPSCs). Their safety and efficacy for the treatment of corneal endothelial dysfunction have been confirmed in rabbit and nonhuman primate animal models. Therefore, the iPSC-derived corneal endothelial cell model may provide a novel effective platform for basic and clinical research of disease modeling, drug screening, mechanistic investigation, and toxicology testing.
Collapse
Affiliation(s)
- Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Zongyi Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Haoyun Duan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| |
Collapse
|