1
|
Kumari CBN, Ambalavanan N, Kumar SR, Mahendra J, Sudhakar U. Microbiological evaluation of vitamin C rich acerola mediated silver and copperoxide nanogel in treatment of periodontitis with and without diabetes mellitus. J Oral Biol Craniofac Res 2024; 14:682-691. [PMID: 39381541 PMCID: PMC11460445 DOI: 10.1016/j.jobcr.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/16/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
Aim Nanotechnology presents a promising approach for managing chronic periodontitis, a common oral disease characterized by gum inflammation and loss of supporting bone around teeth. This study aimed to evaluate the antimicrobial efficacy of acerola-mediated silver nanoparticles (AgNPs) gel and copper oxide nanoparticles (CuONPs) gel in periodontitis patients with and without diabetes. Materials and methods The antimicrobial efficacy of acerola-mediated AgNPs gel and CuONPs nanogel was assessed using the agar well diffusion technique, Minimum Inhibitory Concentration (MIC) assay, Minimum Bactericidal Concentration (MBC) analysis, time-kill curve assay, and cytoplasmic and protein leakage analysis from periodontitis patients with and without diabetes. Results The study found that acerola-mediated AgNPs gel demonstrated more consistent and effective antimicrobial activity against periodontitis, with lower MIC and MBC values compared to the CuONPs gel, across all tested concentrations. These results suggest that acerola-mediated AgNPs gel may be a more effective and targeted therapeutic agent for periodontal disease management. Conclusion The findings emphasize the importance of nanoparticle gel concentration in optimizing periodontal treatment outcomes. Acerola-mediated AgNPs gel, with its superior efficacy and consistency in bactericidal activity, shows significant potential for periodontal therapy. Clinical significance Innovative nanoparticles like copper and silver oxides exhibit antibacterial, anti-inflammatory, and antioxidant properties, making them promising agents for targeting periodontal pathogens. Acerola (Malpighia emarginata), with its high vitamin C content and antioxidant properties, is beneficial in mitigating oxidative stress associated with chronic periodontitis.
Collapse
Affiliation(s)
- C. Burnice Nalina Kumari
- Department of Periodontics, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - N. Ambalavanan
- Department of Periodontics, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - S. Rajesh Kumar
- Nanobiomedicine Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Jaideep Mahendra
- Department of Periodontics, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Uma Sudhakar
- Department of Periodontics, Thai Moogambigai Dental College and Hospital, Tamil Nadu, India
| |
Collapse
|
2
|
Lorenzi C, Lio F, Mazzetti V, Carosi P, Lamelza S, Pistoia ES, Pica F, Gaziano R. Synergistic Effect of Metronidazole and Chlorhexidine against Porphyromonas gingivalis Growth: An In Vitro Study. Dent J (Basel) 2024; 12:307. [PMID: 39452435 PMCID: PMC11505949 DOI: 10.3390/dj12100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Aim: To evaluate the potential synergistic activity of metronidazole (MTZ) and chlorhexidine (CHX) against Porphyromonas. gingivalis (P. gingivalis) growth. Methods: Antimicrobial susceptibility tests of P. gingivalis to MTZ and CHX were performed on in vitro serial 2-fold dilutions of MTZ (from 1 mg/mL to 0.015 mg/mL) and CHX (from 1 mg/mL to 0.03 mg/mL) in thioglycollate medium broth in a 96-well plate. The turbidity of each sample was analyzed by absorbance spectrophotometry at 450 nm wavelengths by using an enzyme-linked immunosorbent assay (ELISA) reader. The MIC50 (minimum inhibitory concentration) and MBC (minimum bactericidal concentration) were assessed. To investigate the potential synergism between MTZ and CHX, bacterial cells were treated with MTZ or CHX, as described above, either alone or in combination. Results: The MIC50 of MTZ was 0.03 mg/mL while that of CHX ranged from 0.12 to 0.06 mg/mL. MTZ and CHX exerted a significant inhibitory effect on P. gingivalis growth in a dose-dependent manner. MTZ at a low and ineffective concentration of 0.015 mg/mL, associated with a suboptimal concentration of CHX (0.03 mg/mL), exhibited a significant synergistic inhibitory effect on bacterial growth (50% inhibition vs. control) (p < 0.001), and the effect was more remarkable with 0.06 mg/mL CHX (75% inhibition vs. control). Conclusions: CHX and MTZ showed a significant synergistic effect against P. gingivalis growth. A non-effective concentration of MTZ (0.015 mg/mL) combined with suboptimal concentrations of CHX (0.03 mg/mL and 0.06 mg/mL) were related to a 50% growth in the inhibition and 99.99% death of P. gingivalis, respectively. The applicability of the clinical use of these concentrations should be tested in randomized controlled trials.
Collapse
Affiliation(s)
- Claudia Lorenzi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy; (C.L.); (F.L.); (V.M.)
- Department of Clinical Sciences and Translational Medicine, School of Dentistry, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Fabrizio Lio
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy; (C.L.); (F.L.); (V.M.)
- Department of Clinical Sciences and Translational Medicine, School of Dentistry, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Vincenzo Mazzetti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy; (C.L.); (F.L.); (V.M.)
- Department of Clinical Sciences and Translational Medicine, School of Dentistry, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Paolo Carosi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy; (C.L.); (F.L.); (V.M.)
- Department of Clinical Sciences and Translational Medicine, School of Dentistry, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | - Enrico Salvatore Pistoia
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (E.S.P.); (F.P.); (R.G.)
| | - Francesca Pica
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (E.S.P.); (F.P.); (R.G.)
| | - Roberta Gaziano
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (E.S.P.); (F.P.); (R.G.)
| |
Collapse
|
3
|
Lima de Sousa T, Dourado D, Rodrigues JS, de Souza Rebouças J, Montes MAJR, Formiga FR. Treatment of periodontal disease: does drug delivery matter? Front Bioeng Biotechnol 2024; 12:1427758. [PMID: 39081330 PMCID: PMC11286396 DOI: 10.3389/fbioe.2024.1427758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Graphical Abstract
Collapse
Affiliation(s)
- Tarcílio Lima de Sousa
- Postgraduate Program in Dentistry, School of Dentistry of Pernambuco, University of Pernambuco (UPE), Recife, Brazil
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, Brazil
| | - Douglas Dourado
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, Brazil
| | - Júlia Soares Rodrigues
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, Brazil
- Postgraduate Program in Applied Cellular and Molecular Biology, Institute of Biological Sciences, University of Pernambuco (UPE), Recife, Brazil
| | - Juliana de Souza Rebouças
- Postgraduate Program in Applied Cellular and Molecular Biology, Institute of Biological Sciences, University of Pernambuco (UPE), Recife, Brazil
| | | | - Fabio Rocha Formiga
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, Brazil
- Postgraduate Program in Applied Cellular and Molecular Biology, Institute of Biological Sciences, University of Pernambuco (UPE), Recife, Brazil
- Faculty of Medical Sciences (FCM), University of Pernambuco (UPE), Recife, Brazil
| |
Collapse
|
4
|
Hashim NT, Babiker R, Rahman MM, Mohamed R, Priya SP, Chaitanya NCSK, Islam MS, Gobara B. Natural Bioactive Compounds in the Management of Periodontal Diseases: A Comprehensive Review. Molecules 2024; 29:3044. [PMID: 38998994 PMCID: PMC11242977 DOI: 10.3390/molecules29133044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/14/2024] Open
Abstract
Periodontal diseases, chronic inflammatory conditions affecting oral health, are primarily driven by microbial plaque biofilm and the body's inflammatory response, leading to tissue damage and potential tooth loss. These diseases have significant physical, psychological, social, and economic impacts, necessitating effective management strategies that include early diagnosis, comprehensive treatment, and innovative therapeutic approaches. Recent advancements in biomanufacturing have facilitated the development of natural bioactive compounds, such as polyphenols, terpenoids, alkaloids, saponins, and peptides, which exhibit antimicrobial, anti-inflammatory, and tissue regenerative properties. This review explores the biomanufacturing processes-microbial fermentation, plant cell cultures, and enzymatic synthesis-and their roles in producing these bioactive compounds for managing periodontal diseases. The integration of these natural compounds into periodontal therapy offers promising alternatives to traditional treatments, potentially overcoming issues like antibiotic resistance and the disruption of the natural microbiota, thereby improving patient outcomes.
Collapse
Affiliation(s)
- Nada Tawfig Hashim
- RAK-College of Dental Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates; (M.M.R.); (R.M.); (S.P.P.); (N.C.C.); (M.S.I.)
| | - Rasha Babiker
- RAK-College of Medical Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates;
| | - Muhammed Mustahsen Rahman
- RAK-College of Dental Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates; (M.M.R.); (R.M.); (S.P.P.); (N.C.C.); (M.S.I.)
| | - Riham Mohamed
- RAK-College of Dental Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates; (M.M.R.); (R.M.); (S.P.P.); (N.C.C.); (M.S.I.)
| | - Sivan Padma Priya
- RAK-College of Dental Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates; (M.M.R.); (R.M.); (S.P.P.); (N.C.C.); (M.S.I.)
| | - Nallan CSK Chaitanya
- RAK-College of Dental Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates; (M.M.R.); (R.M.); (S.P.P.); (N.C.C.); (M.S.I.)
| | - Md Sofiqul Islam
- RAK-College of Dental Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah P.O. Box 12973, United Arab Emirates; (M.M.R.); (R.M.); (S.P.P.); (N.C.C.); (M.S.I.)
| | - Bakri Gobara
- Faculty of Dentistry, University of Khartoum, Khartoum 11115, Sudan;
| |
Collapse
|
5
|
Zhang L, Gao Y, Wang Z, Qi Y, Li L, Wang T, Li D, Wang C. Erythrocyte-Like Mesoporous PDA@CeO 2 Nanozyme with Dual Drugs for Periodontitis Treatment. ACS APPLIED BIO MATERIALS 2024; 7:2851-2861. [PMID: 38587870 DOI: 10.1021/acsabm.3c01213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Periodontitis is a chronic oral inflammatory disease with the characteristic of excess oxidative stress in the inflammatory site, dramatically decreasing the quality of life. Studies show that nanozymes can be ideal candidates for ROS scavenging in periodontitis. Here, we design a multipath anti-inflammatory mesoporous polydopamine@cerium oxide nanobowl (mPDA@CeO2 NB) with multienzyme mimicking properties, which combines the advantages of both CeO2 NP and mPDA NB for synergistically eliminating reactive oxygen species (ROS), including hydroxyl radical (•OH), hydrogen peroxide (H2O2), and superoxide (O2•-). Besides, the erythrocyte-like structure of mNBs makes them a facility for cell uptake, and the mesopores can load both hydrophobic and hydrophilic drugs for combined anti-inflammatory therapy. In vitro and in vivo experiments prove that the combination of CeO2 and mPDA can synergistically achieve multiple complementary ROS eliminations and suppression of ROS-induced inflammation. Moreover, the ROS regulation plus anti-inflammatory drugs in one mPDA@CeO2 NB prevents the progression of periodontitis in a mouse model. Therefore, the design of mPDA@CeO2 NB with these excellent properties provides a therapeutic strategy for inflammatory diseases.
Collapse
Affiliation(s)
- Lingyu Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Ying Gao
- Department of Stomatology, No. 964 Hospital, Changchun, Jilin 130021, P. R. China
| | - Zhuoran Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yanqiu Qi
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Lu Li
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Tingting Wang
- School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, PR China
- Chongqing Research Institute, No. 618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing City 401135, China
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Chungang Wang
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
6
|
Hameed S, Antony DP, Shanmugam R, Raghu S, Adimulapu HS. Enhancing Antimicrobial Efficacy and Synergistic Effects of Nano-Silica-Based Combinations With Doxycycline, Metronidazole, and Ciprofloxacin Against Enterococcus faecalis Biofilms. Cureus 2024; 16:e54668. [PMID: 38524038 PMCID: PMC10960229 DOI: 10.7759/cureus.54668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Enterococcus faecalis biofilm formation within root canals poses a challenging problem in endodontics, often leading to treatment failure. To combat this issue, nanotechnology offers a promising avenue for enhancing antimicrobial efficacy. This study explores the potential synergistic effects of combining nanoscale silica particles with conventional antibiotics, including doxycycline, metronidazole, and ciprofloxacin, against E. faecalis biofilms. The unique characteristics of silica nanoparticles, such as their increased reactivity and ability to be functionalized with other compounds, make them ideal candidates for augmenting antibiotic efficacy. This research investigates the antimicrobial properties of these silica-based combinations and their potential to eliminate or inhibit E. faecalis biofilms more effectively than conventional treatments. Methodology: The methods involved the preparation of nanostructured silica particles and their combination with doxycycline, Flagyl, and ciprofloxacin at subinhibitory concentrations. These combinations were then tested against E. faecalis biofilms using the agar well diffusion technique. RESULTS Preliminary results suggested that the synergistic interactions between silica nanoparticles and antibiotics can significantly enhance antimicrobial efficacy. The combined treatment exhibited superior inhibitory effects on E. faecalis compared to antibiotics or silica nanoparticles alone (P < 0.05). Conclusions: This study sheds light on the potential of nanoscale silica-based combinations to address the challenges posed by E. faecalis biofilms in endodontics. Understanding the mechanisms of synergy between nanoparticles and antibiotics can pave the way for the development of more effective and targeted strategies for root canal disinfection, ultimately improving the success rates of endodontic treatments.
Collapse
Affiliation(s)
- Shahul Hameed
- Conservative Dentistry and Endodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Delphine P Antony
- Conservative Dentistry and Endodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Rajeshkumar Shanmugam
- Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Sandhya Raghu
- Conservative Dentistry and Endodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Hima Sandeep Adimulapu
- Conservative Dentistry and Endodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
7
|
Kiarashi M, Mahamed P, Ghotbi N, Tadayonfard A, Nasiri K, Kazemi P, Badkoobeh A, Yasamineh S, Joudaki A. Spotlight on therapeutic efficiency of green synthesis metals and their oxide nanoparticles in periodontitis. J Nanobiotechnology 2024; 22:21. [PMID: 38183090 PMCID: PMC10770920 DOI: 10.1186/s12951-023-02284-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
Periodontitis, one of the most prevalent dental diseases, causes the loss of bone and gum tissue that hold teeth in place. Several bacteria, commonly present in clinically healthy oral cavities, may induce and perpetuate periodontitis when their concentration rises in the gingival sulcus. Antibacterial effect against various Gram-negative and Gram-positive bacteria, including pathogenic and drug-resistant ones, has been shown for several distinct transient metal and metal oxide NPs. Therefore, NPs may be used in biomedicine to treat periodontal problems and in nanotechnology to inhibit the development of microorganisms. Instead of using harmful chemicals or energy-intensive machinery, biosynthesis of metal and metal oxide nanoparticles (NPs) has been suggested. To produce metal and metal oxide NPs, the ideal technique is "Green" synthesis because of its low toxicity and safety for human health and the environment. Gold NPs (AuNPs) appear to be less toxic to mammalian cells than other nanometals because their antibacterial activity is not dependent on reactive oxygen species (ROS). AgNPs also possess chemical stability, catalytic activity, and superior electrical and thermal conductivity, to name a few of their other advantageous characteristics. It was observed that zinc oxide (ZnO) NPs and copper (Cu) NPs exhibited discernible inhibitory effects against gram-positive and gram-negative bacterial strains, respectively. ZnO NPs demonstrated bactericidal activity against the microorganisms responsible for periodontitis. Medications containing magnetic NPs are highly effective against multidrug-resistant bacterial and fungal infections. The titanium dioxide (TiO2) NPs are implicated in elevating salivary peroxidase activity in individuals diagnosed with chronic periodontitis. Furthermore, specific metallic NPs have the potential to enhance the antimicrobial efficacy of periodontitis treatments when combined. Therefore, these NPs, as well as their oxide NPs, are only some of the metals and metal oxides that have been synthesized in environmentally friendly ways and shown to have therapeutic benefits against periodontitis.
Collapse
Affiliation(s)
- Mohammad Kiarashi
- College of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Parham Mahamed
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Nader Ghotbi
- General Dentist, Isfahan Azad University, School of Dentistry, Isfahan, Iran
| | - Azadeh Tadayonfard
- Maxillofacial prosthetics fellow, Postgraduate department of prosthodontics, Dental Faculty,Tehran University of Medical Sciences, Tehran, Iran
| | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Parisa Kazemi
- Faculty of Dentistry, Ilam University of Medical Sciences, Ilam, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Saman Yasamineh
- Azad Researchers, Viro-Biotech, Tehran, Iran.
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Ali Joudaki
- Department of Oral and Maxillofacial Surgery, Lorestan University of Medical Sciences, Khorram Abad, Lorestan, Iran.
| |
Collapse
|
8
|
Ahmed MM, Alasmari DS. A Cross-Sectional Evaluation of Dental Professional's Knowledge of Locally Delivered Antimicrobial Agents and their Application in Periodontal Practice. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2023; 15:S923-S926. [PMID: 37694064 PMCID: PMC10485548 DOI: 10.4103/jpbs.jpbs_291_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Dentists must employ locally delivered antimicrobial agents (LDAs) in a way that is in line with current recommendations from the scientific literature and the guidelines set by professional organizations. Considering the dearth of research on this topic, it is not known what strategies are adapted when using LDAs in their periodontal practice. So, the purpose of this research was to investigate how LDAs are utilized by dental professionals in their distinct periodontal practices. Materials and Methods This cross-sectional study used a closed-ended questionnaire. Dental professionals received electronic copies of the eight-item questionnaire. The questionnaire assessed the relevance of LDAs, how frequently they are used, which ones are used most, the number of patients who receive them, their understanding of pharmacological activities, and their knowledge of current treatment guidelines. The questionnaire's validity and reliability were evaluated before being presented to participants. Using the Statistical Package for the Social Sciences (SPSS), the input was analyzed. Results A total of 120 dental professionals, with an average age of 34.7 years, answered the questionnaire. Half of these individuals have no history of ever using LDAs. The most frequent LDA used in its different forms was chlorhexidine gluconate (CHX), followed by tetracycline. The majority of participants placed LDAs (80%) in less than 10 patients. Less than half acknowledged the different LDAs and their pharmacological activities. Not even 70% of clinicians were up-to-date on the current European Federation of Periodontology (EFP) guidelines. None of the participants discounted the significance of LDAs in periodontal care. Conclusion Dental professionals regard LDAs as essential to periodontal therapy. Yet, they lacked knowledge about general, pharmacological, and clinical aspects. The patient experience with LDAs was limited by an inappropriate deployment pattern.
Collapse
Affiliation(s)
- Muzammil Moin Ahmed
- Department of Dental Hygiene, College of Applied Health Sciences in Ar Rass, Qassim University, Al Qassim, Kingdom of Saudi Arabia
| | - Dhafer S. Alasmari
- Department of Periodontology and Oral Medicine, College of Dentistry, Qassim University, Buraidah, Al Qassim, Kingdom of Saudi Arabia
| |
Collapse
|