1
|
Kim SA, Ivanov AO, Halepa AA, Sysoeva AA, Gunenko GA. Surgical treatment of epilepsy in a patient with bilateral periventricular nodular heterotopia: A case report. Surg Neurol Int 2023; 14:283. [PMID: 37680926 PMCID: PMC10481799 DOI: 10.25259/sni_478_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/20/2023] [Indexed: 09/09/2023] Open
Abstract
Background Periventricular nodular heterotopia (PNH) is a rare pathological condition characterized by the presence of nodules of gray matter located along the lateral ventricles of the brain. The condition typically presents with seizures and other neurological symptoms, and various methods of surgical treatment and postoperative outcomes have been described in the literature. Case Description We present a case study of a 17-year-old patient who has been experiencing seizures since the age of 13. The patient reported episodes of loss of consciousness and periodic freezing with preservation of posture. Two years later, the patient experienced his first generalized tonic-clonic seizure during nocturnal sleep and was subsequently admitted to a neurological department. A magnetic resonance imaging scan of the brain with an epilepsy protocol (3 Tesla) confirmed the presence of an extended bilateral subependymal nodular heterotopy at the level of the temporal and occipital horns of the lateral ventricles, which was larger on the left side, and a focal subcortical heterotopy of the right cerebellar hemisphere. The patient underwent a posterior quadrant disconnection surgery, which aimed to isolate the extensive epileptogenic zone in the left temporal, parietal, and occipital lobes using standard techniques. As of today, 6 months have passed since the surgery and there have been no registered epileptic seizures during this period following the surgical treatment. Conclusion Although PNHs can be extensive and located bilaterally, surgical intervention may still be an effective way to achieve seizure control in selected cases.
Collapse
Affiliation(s)
- Sergey Afanasievich Kim
- Department of Pediatric Neurosurgery, Federal Center of Neurosurgery, Novosibirsk, Russian Federation
- Research Institute of Clinical and Experimental Lymphology - Branch of the Federal State Budgetary Scientific Institution “Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences”, Novosibirsk, Russia
| | - Anton Olegovich Ivanov
- Department of Pediatric Neurosurgery, Federal Center of Neurosurgery, Novosibirsk, Russian Federation
| | | | - Anna Alexeevna Sysoeva
- Department of Pediatric Neurosurgery, Federal Center of Neurosurgery, Novosibirsk, Russian Federation
| | | |
Collapse
|
2
|
Frazzini V, Whitmarsh S, Lehongre K, Yger P, Lemarechal JD, Mathon B, Adam C, Hasboun D, Lambrecq V, Navarro V. Human periventricular nodular heterotopia shows several interictal epileptic patterns and hyperexcitability of neuronal firing. Front Neurol 2022; 13:1022768. [PMID: 36438938 PMCID: PMC9695411 DOI: 10.3389/fneur.2022.1022768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Periventricular nodular heterotopia (PNH) is a malformation of cortical development that frequently causes drug-resistant epilepsy. The epileptogenicity of ectopic neurons in PNH as well as their role in generating interictal and ictal activity is still a matter of debate. We report the first in vivo microelectrode recording of heterotopic neurons in humans. Highly consistent interictal patterns (IPs) were identified within the nodules: (1) Periodic Discharges PLUS Fast activity (PD+F), (2) Sporadic discharges PLUS Fast activity (SD+F), and (3) epileptic spikes (ES). Neuronal firing rates were significantly modulated during all IPs, suggesting that multiple IPs were generated by the same local neuronal populations. Furthermore, firing rates closely followed IP morphologies. Among the different IPs, the SD+F pattern was found only in the three nodules that were actively involved in seizure generation but was never observed in the nodule that did not take part in ictal discharges. On the contrary, PD+F and ES were identified in all nodules. Units that were modulated during the IPs were also found to participate in seizures, increasing their firing rate at seizure onset and maintaining an elevated rate during the seizures. Together, nodules in PNH are highly epileptogenic and show several IPs that provide promising pathognomonic signatures of PNH. Furthermore, our results show that PNH nodules may well initiate seizures.
Collapse
Affiliation(s)
- Valerio Frazzini
- AP-HP, Pitié Salpêtrière Hospital, Epilepsy Unit and Reference Center for Rare Epilepsies, Paris, France
- Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Stephen Whitmarsh
- Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Katia Lehongre
- Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Pierre Yger
- Institut de la Vision, INSERM UMRS 968, UPMC UM 80, Paris, France
| | - Jean-Didier Lemarechal
- Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France
| | - Bertrand Mathon
- Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
- AP-HP, Pitié Salpêtrière Hospital, Department of Neurosurgery, Paris, France
| | - Claude Adam
- AP-HP, Pitié Salpêtrière Hospital, Epilepsy Unit and Reference Center for Rare Epilepsies, Paris, France
| | - Dominique Hasboun
- AP-HP, Pitié Salpêtrière Hospital, Epilepsy Unit and Reference Center for Rare Epilepsies, Paris, France
- AP-HP, Pitié Salpêtrière Hospital, Department de Neuroradiology, Paris, France
| | - Virginie Lambrecq
- AP-HP, Pitié Salpêtrière Hospital, Epilepsy Unit and Reference Center for Rare Epilepsies, Paris, France
- Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Vincent Navarro
- AP-HP, Pitié Salpêtrière Hospital, Epilepsy Unit and Reference Center for Rare Epilepsies, Paris, France
- Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
- *Correspondence: Vincent Navarro
| |
Collapse
|
3
|
Alis C, Alis D, Uslu Besli L, Karaarslan E, Sonmezoglu K, Ozkara C, Yeni SN. The analysis of 18 F-FDG PET/MRI, electroencephalography, and semiology in patients with gray matter heterotopia: A pilot study. Acta Neurol Scand 2022; 146:662-670. [PMID: 36102058 DOI: 10.1111/ane.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/29/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To describe 18 F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18 F-FDG PET/MRI) along with semiology and electroencephalography (EEG) in patients with gray matter heterotopia (GMH); to evaluate the concordance between 18 F-FDG PET/MRI and clinical epileptogenic zone (EZ). MATERIALS & METHODS GMH (subcortical heterotopia [SCH] and periventricular nodular heterotopia [PNH]) patients with epilepsy who underwent 18 F-FDG PET/MRI were retrospectively enrolled. Two radiologists evaluated brain MRI, while two nuclear medicine specialists assessed the 18 F-FDG PET. The SUVmax values of visually hypometabolic cortical areas were compared to the contralateral cortex using a SUVmax threshold value of 10%; the SUVmax values of GMH lesions were compared with that of the right precentral gyrus. The cortex or GMH with hypometabolism on 18 F-FDG PET/MRI was considered representative of the EZ. The clinical EZ was identified using EEG and semiology. RESULTS Thirty patients (19 PNH; 11 SCH) with a mean age of 28.46 ± 9.52 years were enrolled. The heterotopic nodules were ametabolic in 3 patients (10%), hypometabolic in 16 (33.33%), isometabolic in 13 (26.66%), and hypermetabolic in 4 (10%). 18 F-FDG PET/MRI demonstrated hypometabolism in the cortex and GMH in 22/30 (73.33%) and 16/30 (53.33%). We could identify a clinical EZ in 18 patients, and 15 out of 18 (83.33%) had concordant 18 F-FDG PET/MRI findings. CONCLUSION Heterotopic nodules in GMH patients show different metabolic patterns on 18 F-FDG PET/MRI, with nearly three-quarters of the patients having cortical hypometabolism. 18 F-FDG PET/ MRI findings are mostly concordant with the clinical EZ.
Collapse
Affiliation(s)
- Ceren Alis
- Cerrahpasa School of Medicine, Department of Neurology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Deniz Alis
- Department of Radiology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - Lebriz Uslu Besli
- Cerrahpasa School of Medicine, Department of Nuclear Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ercan Karaarslan
- Department of Radiology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - Kerim Sonmezoglu
- Cerrahpasa School of Medicine, Department of Nuclear Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Cigdem Ozkara
- Cerrahpasa School of Medicine, Department of Neurology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Seher Naz Yeni
- Cerrahpasa School of Medicine, Department of Neurology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
4
|
Choi JY, Krishnan B, Hu S, Martinez D, Tang Y, Wang X, Sakaie K, Jones S, Murakami H, Blümcke I, Najm I, Ma D, Wang ZI. Using magnetic resonance fingerprinting to characterize periventricular nodular heterotopias in pharmacoresistant epilepsy. Epilepsia 2022; 63:1225-1237. [PMID: 35343593 PMCID: PMC9081261 DOI: 10.1111/epi.17191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE We aimed to use a novel magnetic resonance fingerprinting (MRF) technique to examine in vivo tissue property characteristics of periventricular nodular heterotopia (PVNH). These characteristics were further correlated with stereotactic-electroencephalographic (SEEG) ictal onset findings. METHODS We included five patients with PVNH who had SEEG-guided surgery and at least 1 year of seizure freedom or substantial seizure reduction. High-resolution MRF scans were acquired at 3 T, generating three-dimensional quantitative T1 and T2 maps. We assessed the differences between T1 and T2 values from the voxels in the nodules located in the SEEG-defined seizure onset zone (SOZ) and non-SOZ, on -individual and group levels. Receiver operating characteristic analyses were performed to obtain the optimal classification performance. Quantification of SEEG ictal onset signals from the nodules was performed by calculating power spectrum density (PSD). The association between PSD and T1 /T2 values was further assessed at different frequency bands. RESULTS Individual-level analysis showed T1 was significantly higher in SOZ voxels than non-SOZ voxels (p < .05), with an average 73% classification accuracy. Group-level analysis also showed higher T1 was significantly associated with SOZ voxels (p < .001). At the optimal cutoff (normalized T1 of 1.1), a 76% accuracy for classifying SOZ nodules from non-SOZ nodules was achieved. T1 values were significantly associated with ictal onset PSD at the ultraslow, θ, β, γ, and ripple bands (p < .05). T2 values were significantly associated with PSD only at the ultraslow band (p < .05). SIGNIFICANCE Quantitative MRF measures, especially T1 , can provide additional noninvasive information to separate nodules in SOZ and non-SOZ. The T1 and T2 tissue property changes carry electrophysiological underpinnings relevant to the epilepsy, as shown by their significant positive associations with power changes during the SEEG seizure onset. The use of MRF as a supplementary noninvasive tool may improve presurgical evaluation for patients with PVNH and pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Joon Yul Choi
- Charles Shor Epilepsy Center, Cleveland Clinic, Neurological Institute, Cleveland, Ohio, USA
| | - Balu Krishnan
- Charles Shor Epilepsy Center, Cleveland Clinic, Neurological Institute, Cleveland, Ohio, USA
| | - Siyuan Hu
- Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - David Martinez
- Charles Shor Epilepsy Center, Cleveland Clinic, Neurological Institute, Cleveland, Ohio, USA
| | - Yinging Tang
- Charles Shor Epilepsy Center, Cleveland Clinic, Neurological Institute, Cleveland, Ohio, USA.,Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaofeng Wang
- Quantitative Health Science, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ken Sakaie
- Imaging Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Stephen Jones
- Imaging Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hiroatsu Murakami
- Charles Shor Epilepsy Center, Cleveland Clinic, Neurological Institute, Cleveland, Ohio, USA
| | - Ingmar Blümcke
- Charles Shor Epilepsy Center, Cleveland Clinic, Neurological Institute, Cleveland, Ohio, USA.,Neuropathology, University of Erlangen, Erlangen, Germany
| | - Imad Najm
- Charles Shor Epilepsy Center, Cleveland Clinic, Neurological Institute, Cleveland, Ohio, USA
| | - Dan Ma
- Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Zhong Irene Wang
- Charles Shor Epilepsy Center, Cleveland Clinic, Neurological Institute, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Xu X, Yu X, Kang G, Mao Z, Cui Z, Pan L, Zong R, Tang Y, Wan M, Ling Z. Role of High-Frequency Oscillation in Locating an Epileptogenic Zone for Radiofrequency Thermocoagulation. Front Hum Neurosci 2021; 15:699556. [PMID: 34630056 PMCID: PMC8497699 DOI: 10.3389/fnhum.2021.699556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Radiofrequency thermocoagulation (RFTC) has been proposed as a first-line surgical treatment option for patients with drug-resistant focal epilepsy (DRE) that is associated with gray matter nodular heterotopia (GMNH). Excellent results on seizures have been reported following unilateral RFTC performed on ictal high-frequency-discharge, fast-rhythm, and low-voltage initiation areas. Complex cases (GMNH plus other malformations of cortical development) do not have good outcomes with RFTC. Yet, there is little research studying the effect of high-frequency oscillation in locating epileptogenic zones for thermocoagulation on unilateral, DRE with bilateral GMNH. We present a case of DRE with bilateral GMNH, treated using RFTC on unilateral GMNH and the overlying cortex, guided by stereotactic electroencephalogram (SEGG), and followed up for 69 months. Twenty-four-hour EGG recordings, seizure frequency, post-RFTC MRI, and neuropsychological tests were performed once yearly. To date, this patient is seizure-free, the electroencephalogram is normal, neuropsychological problems have not been found, and the trace of RFTC has been clearly identified on MRI. His dosage of antiepileptic medication has, furthermore, been significantly reduced. It is concluded that RFTC on unilateral DRE with bilateral GMNH may achieve good long-term effects, lasting up to, and perhaps longer than, 69 months. Ictal high-frequency oscillation (fast ripple) inside the heterotopia and the overlying cortex may be the key to this successful effect.
Collapse
Affiliation(s)
- Xin Xu
- Department of Neurosurgery, General Hospital of PLA, Beijing, China
| | - Xingguang Yu
- Department of Neurosurgery, General Hospital of PLA, Beijing, China
| | - Guixia Kang
- Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing, China
| | - Zhiqi Mao
- Department of Neurosurgery, General Hospital of PLA, Beijing, China
| | - Zhiqiang Cui
- Department of Neurosurgery, General Hospital of PLA, Beijing, China
| | - Longsheng Pan
- Department of Neurosurgery, General Hospital of PLA, Beijing, China
| | - Rui Zong
- Department of Neurosurgery, General Hospital of PLA, Beijing, China
| | - Yuan Tang
- Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing, China
| | - Ming Wan
- Department of Neurosurgery, General Hospital of PLA, Beijing, China
| | - Zhipei Ling
- Department of Neurosurgery, General Hospital of PLA, Beijing, China
| |
Collapse
|
6
|
Leon-Rojas J, Cornell I, Rojas-Garcia A, D’Arco F, Panovska-Griffiths J, Cross H, Bisdas S. The role of preoperative diffusion tensor imaging in predicting and improving functional outcome in pediatric patients undergoing epilepsy surgery: a systematic review. BJR Open 2021; 3:20200002. [PMID: 34381942 PMCID: PMC8320117 DOI: 10.1259/bjro.20200002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Diffusion tensor imaging (DTI) is a useful neuroimaging technique for surgical planning in adult patients. However, no systematic review has been conducted to determine its utility for pre-operative analysis and planning of Pediatric Epilepsy surgery. We sought to determine the benefit of pre-operative DTI in predicting and improving neurological functional outcome after epilepsy surgery in children with intractable epilepsy. METHODS A systematic review of articles in English using PubMed, EMBASE and Scopus databases, from inception to January 10, 2020 was conducted. All studies that used DTI as either predictor or direct influencer of functional neurological outcome (motor, sensory, language and/or visual) in pediatric epilepsy surgical candidates were included. Data extraction was performed by two blinded reviewers. Risk of bias of each study was determined using the QUADAS 2 Scoring System. RESULTS 13 studies were included (6 case reports/series, 5 retrospective cohorts, and 2 prospective cohorts) with a total of 229 patients. Seven studies reported motor outcome; three reported motor outcome prediction with a sensitivity and specificity ranging from 80 to 85.7 and 69.6 to 100%, respectively; four studies reported visual outcome. In general, the use of DTI was associated with a high degree of favorable neurological outcomes after epilepsy surgery. CONCLUSION Multiple studies show that DTI helps to create a tailored plan that results in improved functional outcome. However, more studies are required in order to fully assess its utility in pediatric patients. This is a desirable field of study because DTI offers a non-invasive technique more suitable for children. ADVANCES IN KNOWLEDGE This systematic review analyses, exclusively, studies of pediatric patients with drug-resistant epilepsy and provides an update of the evidence regarding the role of DTI, as part of the pre-operative armamentarium, in improving post-surgical neurological sequels and its potential for outcome prediction.
Collapse
Affiliation(s)
| | - Isabel Cornell
- Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
| | | | - Felice D’Arco
- Department of Pediatric Neuroradiology, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | | | - Helen Cross
- Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
- NeurALL Research Group, Universidad Internacional del Ecuador, Medical School, Quito, Ecuador
- Department of Applied Health Research, University College London, London, UK
- Department of Pediatric Neuroradiology, Great Ormond Street Hospital for Children NHS Trust, London, UK
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, UK
| | | |
Collapse
|
7
|
Bund C, Hirsch MPV, Ollivier I, Hirsch E, Namer IJ. Three Different FDG Patterns in Periventricular Nodular Heterotopia Correlated to Video Stereoelectroencephalography. Clin Nucl Med 2021; 46:586-588. [PMID: 33661202 DOI: 10.1097/rlu.0000000000003573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT A 40-year-old woman with a drug-resistant focal epilepsy underwent cerebral FDG PET in phase 1 presurgical epilepsy study. MRI essentially showed multiple periventricular nodular heterotopias. The stereoelectroencephalography coupled to MRI and FDG PET helped to define the anatomofunctional correlation of the epileptogenic zone network. This procedure brought to light 3 distinct patterns of FDG consumption, corresponding to different anatomoelectroclinical features. This pattern was already found in a previous FDG PET reflecting a "stable" permanent intralesional intercritical stereoelectroencephalography activity, an electrical "signature" of the lesion. Finally, functional imaging improved thermocoagulation in this patient and emphasized the use of FDG in drug-resistant epilepsy.
Collapse
Affiliation(s)
| | | | - Irène Ollivier
- Service de Neurochirurgie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Edouard Hirsch
- Service de Neurologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourgand
| | | |
Collapse
|
8
|
Lesko R, Benova B, Jezdik P, Liby P, Jahodova A, Kudr M, Tichy M, Zamecnik J, Krsek P. The clinical utility of intraoperative electrocorticography in pediatric epilepsy surgical strategy and planning. J Neurosurg Pediatr 2020; 26:533-542. [PMID: 32736347 DOI: 10.3171/2020.4.peds20198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/29/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In this study, the authors aimed to determine 1) whether the use of intraoperative electrocorticography (ECoG) affects outcomes and complication rates of children undergoing resective epilepsy surgery; 2) which patient- and epilepsy-related variables might influence ECoG-based surgical strategy; and 3) what the predictors of epilepsy surgery outcomes are. METHODS Over a period of 12 years, data were collected on pediatric patients who underwent tailored brain resections in the Motol Epilepsy Center. In patients in whom an abnormal ECoG pattern (e.g., spiking, suppression burst, or recruiting rhythm) was not observed beyond presurgically planned resection margins, the authors did not modify the surgical plan (group A). In those with significant abnormal ECoG findings beyond resection margins, the authors either did (group B) or did not (group C) modify the surgical plan, depending on the proximity of the eloquent cortex or potential extent of resection. Using Fisher's exact test and the chi-square test, the 3 groups were compared in relation to epilepsy surgery outcomes and complication rate. Next, multivariate models were constructed to identify variables associated with each of the groups and with epilepsy surgery outcomes. RESULTS Patients in group C achieved significantly lower rates of seizure freedom compared to groups A (OR 30.3, p < 0.001) and B (OR 35.2, p < 0.001); groups A and B did not significantly differ (p = 0.78). Patients in whom the surgical plan was modified suffered from more frequent complications (B vs A+C, OR 3.8, p = 0.01), but these were mostly minor (duration < 3 months; B vs A+C, p = 0.008). In all cases, tissue samples from extended resections were positive for the presence of the original pathology. Patients with intended modification of the surgical plan (groups B+C) suffered more often from daily seizures, had a higher age at first seizure, had intellectual disability, and were regarded as MR-negative (p < 0.001). Unfavorable surgical outcome (Engel class II-IV) was associated with focal cortical dysplasia, incomplete resection based on MRI and/or ECoG findings, negative MRI finding, and inability to modify the surgical plan when indicated. CONCLUSIONS Intraoperative ECoG serves as a reliable tool to guide resection and may inform the prognosis for seizure freedom in pediatric patients undergoing epilepsy surgery. ECoG-based modification of the surgical plan is associated with a higher rate of minor complications. Children in whom ECoG-based modification of the surgical plan is indicated but not feasible achieve significantly worse surgical outcomes.
Collapse
Affiliation(s)
| | | | - Petr Jezdik
- 3Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University of Prague, Czech Republic
| | | | | | | | | | - Josef Zamecnik
- 4Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and Motol University Hospital; and
| | | |
Collapse
|
9
|
Khoo HM, Gotman J, Hall JA, Dubeau F. Treatment of Epilepsy Associated with Periventricular Nodular Heterotopia. Curr Neurol Neurosci Rep 2020; 20:59. [PMID: 33123826 DOI: 10.1007/s11910-020-01082-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW Epilepsy associated with periventricular nodular heterotopia (PNH), a developmental malformation, is frequently drug-resistant and requires focal therapeutic intervention. Invasive EEG study is usually necessary to delineate the epileptogenic zone, but constructing an accurate hypothesis to define an appropriate electrode implantation scheme and the treatment is challenging. This article reviews recent studies that help understanding the epileptogenicity and potential therapeutic options in PNH. RECENT FINDINGS New noninvasive diagnostic and intracerebral EEG analytic tools demonstrated that cortical hyperexcitability and aberrant connectivity (between nodules and cortices and among nodules) are likely mechanisms causing epilepsy in most patients. The deeply seated PNH, if epileptogenic, are ideal target for stereotactic ablative techniques, which offer concomitant ablation of multiple regions with relatively satisfactory seizure outcome. Advance in diagnostic and analytic tools have enhanced our understanding of the complex epileptogenicity in PNH. Development in stereotactic ablative techniques now offers promising therapeutic options for these patients.
Collapse
Affiliation(s)
- Hui Ming Khoo
- Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita-shi, Osaka Prefecture, 565-0871, Japan.
| | - Jean Gotman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Jeffery A Hall
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - François Dubeau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| |
Collapse
|
10
|
T2-sequence with contrast inversion: diagnostic value in the investigation of gray matter heterotopias. Neuroreport 2020; 31:686-690. [PMID: 32427710 DOI: 10.1097/wnr.0000000000001463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
To compare the diagnostic value of T1-inversion recovery sequence (T1 IR) to that of a T2-sequence with contrast inversion (T2 CI) in the investigation of heterotopias. In this study, we processed a contrast-inverted copy of our coronal T2-sequence of 21 patients with subependymal and subcortical heterotopias on an online picture archiving and communication system workstation. The diagnostic performance of these images was compared with the T1 IR of the same patients by quantitative and qualitative assessments regarding signal-to-noise ratio (SNR), lesion-to-white matter contrast-to-noise ratio (CNR), lesion conspicuity, level of artifacts, overall image quality as well as diagnostic content. SNR values of the T2 CI were significantly higher than those of the T1 IR. CNR values of both sequences were similar. No relevant difference was found for lesion conspicuity and level of artifacts. Overall image quality of the T2 CI was rated slightly better by one reader. Both readers voted the images to have the same diagnostic content. Beside the exact depiction of the hippocampus in the high resoluted T2-sequence, its contrast-inverted copy (T2 CI) is also useful in the detection of heterotopias. In conjunction with the MPRAGE or MP2RAGE as a three-dimensional sequence, it could offer an equivalent and time-saving alternative to the T1 IR in the investigation of this type of malformation of cortical development.
Collapse
|
11
|
Nolan RL, Brandmeir N, Tucker ES, Magruder JL, Lee MR, Chen G, Lewis JW. Functional and resting-state characterizations of a periventricular heterotopic nodule associated with epileptogenic activity. Neurosurg Focus 2020; 48:E10. [PMID: 32006947 DOI: 10.3171/2019.11.focus19765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/05/2019] [Indexed: 11/06/2022]
Abstract
The object of this study was to extensively characterize a region of periventricular nodular heterotopia (PVNH) in an epilepsy patient to reveal its possible neurocognitive functional role(s). The authors used 3-T MRI approaches to exhaustively characterize a single, right hemisphere heterotopion in a high-functioning adult male with medically responsive epilepsy, which had manifested during late adolescence. The heterotopion proved to be spectroscopically consistent with a cortical-like composition and was interconnected with nearby ipsilateral cortical fundi, as revealed by fiber tractography (diffusion-weighted imaging) and resting-state functional connectivity MRI (rsfMRI). Moreover, the region of PVNH demonstrated two novel characterizations for a heterotopion. First, functional MRI (fMRI), as distinct from rsfMRI, showed that the heterotopion was significantly modulated while the patient watched animated video scenes of biological motion (i.e., cartoons). Second, rsfMRI, which demonstrated correlated brain activity during a task-negative state, uniquely showed directionality within an interconnected network, receiving positive path effects from patent cortical and cerebellar foci while outputting only negative path effects to specific brain foci.These findings are addressed in the context of the impact on noninvasive presurgical brain mapping strategies for adult and pediatric patient workups, as well as the impact of this study on an understanding of the functional cortical architecture underlying cognition from a neurodiversity and evolutionary perspective.
Collapse
Affiliation(s)
| | - Nicholas Brandmeir
- 2Neurosurgery, Rockefeller Neuroscience Institute and Center for Advanced Imaging at West Virginia University
| | | | - John L Magruder
- 3Department of Pediatrics, West Virginia University, Morgantown, West Virginia; and
| | - Mark R Lee
- 2Neurosurgery, Rockefeller Neuroscience Institute and Center for Advanced Imaging at West Virginia University
| | - Gang Chen
- 4Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
12
|
Liu W, Wu X, Zhou D, Gong Q. Reading deficits correlate with cortical and subcortical volume changes in a genetic migration disorder. Medicine (Baltimore) 2019; 98:e17070. [PMID: 31490406 PMCID: PMC6739000 DOI: 10.1097/md.0000000000017070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Periventricular nodular heterotopia (PNH) is the most common type of epileptogenic neuronal migration disorder, and often presents with epilepsy and reading disability. The functional role of ectopic nodules has been widely studied. However, the associated structural cortical and subcortical volumetric alterations have not been well characterized. Moreover, it is unknown whether a correlation between volumetric changes and behavioral problems exists.40 subjects with bilateral PNH and 40 matched healthy controls were enrolled in this study. The total cerebral, gray matter, white matter, and cerebrospinal fluid (CSF) volumes were compared between the two groups. Furthermore, structural and functional correlations were evaluated between volumetric changes and reading disability.There were no significant differences detected in total cerebral, gray matter or CSF volumes between the two groups, but there was a significant trend of larger gray-matter volume in PNH. Specifically, smaller white matter volumes were found in the PNH patients. Moreover, the volume of white matter was negatively related to time in the digit rapid naming task and a similar but insignificant trend was seen between the volume of gray matter and backward digit span.These findings suggest that reading disability exists in our sample of bilateral PNH. Periventricular nodules would have normally migrated to the overlying cortex. However, the total cerebral, gray matter, and CSF volumes were unaffected. Alterations in neuronal migration may have an impact in the white matter associated reading dysfluency, that is, visually normal.
Collapse
Affiliation(s)
- Wenyu Liu
- Department of Neurology, West China Hospital
| | - Xintong Wu
- Department of Neurology, West China Hospital
| | - Dong Zhou
- Department of Neurology, West China Hospital
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Stefan H, Schmitt FC. Epileptogenicity and pathology - Under consideration of ablative approaches. Epilepsy Res 2018; 142:109-112. [PMID: 29609992 DOI: 10.1016/j.eplepsyres.2018.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 03/12/2018] [Accepted: 03/25/2018] [Indexed: 11/27/2022]
Abstract
Besides resective epilepsy surgery, minimally invasive ablation using new diagnostic and therapeutic techniques recently became available. Optimal diagnostic approaches for these treatment options are discussed. The pathophysiology of epileptogenic networks differs depending on the lesion-types and location, requiring a differential use of non-invasive or invasive functional studies. In addition to the definition of epileptogenic zones, a challenge for pre-surgical investigation is the determination of three-dimensional epileptic networks to be removed.
Collapse
Affiliation(s)
- H Stefan
- Department of Neurology - Biomagnetism, University Hospital Erlangen, 10, Schwabachanlage, 91054 Erlangen, Germany.
| | - F C Schmitt
- Department of Neurology, University Hospital Magdeburg, Germany
| |
Collapse
|
14
|
Eekers DB, Pijnappel EN, Schijns OE, Colon A, Hoeben A, Zindler JD, Postma AA, Hoffmann AL, Lambin P, Troost EG. Evidence on the efficacy of primary radiosurgery or stereotactic radiotherapy for drug-resistant non-neoplastic focal epilepsy in adults: A systematic review. Seizure 2018; 55:83-92. [DOI: 10.1016/j.seizure.2018.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/28/2022] Open
|
15
|
Liu W, Yan B, An D, Niu R, Tang Y, Tong X, Gong Q, Zhou D. Perilesional and contralateral white matter evolution and integrity in patients with periventricular nodular heterotopia and epilepsy: a longitudinal diffusion tensor imaging study. Eur J Neurol 2017; 24:1471-1478. [PMID: 28872216 DOI: 10.1111/ene.13441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/31/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND PURPOSE This study aimed to assess the evolution of perinodular and contralateral white matter abnormalities in patients with periventricular nodular heterotopia (PNH) and epilepsy. METHODS Diffusion tensor imaging (DTI) (64 directions) and 3 T structural magnetic resonance imaging were performed in 29 PNH patients (mean age 27.3 years), and 16 patients underwent a second scan (average time between the two scans 1.1 years). Fractional anisotropy and mean diffusivity were measured within the perilesional and contralateral white matter. RESULTS Longitudinal analysis showed that white matter located 10 mm from the focal nodule displayed characteristics intermediate to tissue 5 mm away, and normal-appearing white matter (NAWM) also established evolution profiles of perinodular white matter in different cortical lobes. Compared to 29 age- and sex-matched healthy controls, significant decreased fractional anisotropy and elevated mean diffusivity values were observed in regions 5 and 10 mm from nodules (P < 0.01), whilst DTI metrics of the remaining NAWM did not differ significantly from controls. Additionally, normal DTI metrics were shown in the contralateral region in patients with unilateral PNH. CONCLUSIONS Periventricular nodular heterotopia is associated with microstructural abnormalities within the perilesional white matter and the extent decreases with increasing distance from the nodule. In the homologous contralateral region, white matter diffusion metrics were unchanged in unilateral PNH. These findings have clinical implications with respect to the medical and surgical interventions of PNH-related epilepsy.
Collapse
Affiliation(s)
- W Liu
- Departments of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - B Yan
- Departments of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - D An
- Departments of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - R Niu
- Departments of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
| | - Y Tang
- Departments of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - X Tong
- Departments of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Q Gong
- Departments of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
| | - D Zhou
- Departments of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Mirandola L, Mai RF, Francione S, Pelliccia V, Gozzo F, Sartori I, Nobili L, Cardinale F, Cossu M, Meletti S, Tassi L. Stereo-EEG: Diagnostic and therapeutic tool for periventricular nodular heterotopia epilepsies. Epilepsia 2017; 58:1962-1971. [DOI: 10.1111/epi.13895] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Laura Mirandola
- Department of Biomedical, Metabolic, and Neural Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Roberto F. Mai
- “Claudio Munari” Epilepsy Surgery Center; Niguarda Hospital; Milano Italy
| | - Stefano Francione
- “Claudio Munari” Epilepsy Surgery Center; Niguarda Hospital; Milano Italy
| | - Veronica Pelliccia
- “Claudio Munari” Epilepsy Surgery Center; Niguarda Hospital; Milano Italy
- Department of Neuroscience; University of Parma; Parma Italy
| | - Francesca Gozzo
- “Claudio Munari” Epilepsy Surgery Center; Niguarda Hospital; Milano Italy
| | - Ivana Sartori
- “Claudio Munari” Epilepsy Surgery Center; Niguarda Hospital; Milano Italy
| | - Lino Nobili
- “Claudio Munari” Epilepsy Surgery Center; Niguarda Hospital; Milano Italy
| | | | - Massimo Cossu
- “Claudio Munari” Epilepsy Surgery Center; Niguarda Hospital; Milano Italy
| | - Stefano Meletti
- Department of Biomedical, Metabolic, and Neural Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Laura Tassi
- “Claudio Munari” Epilepsy Surgery Center; Niguarda Hospital; Milano Italy
| |
Collapse
|
17
|
Liu W, An D, Tong X, Niu R, Gong Q, Zhou D. Region-specific connectivity in patients with periventricular nodular heterotopia and epilepsy: A study combining diffusion tensor imaging and functional MRI. Epilepsy Res 2017; 136:137-142. [PMID: 28850831 DOI: 10.1016/j.eplepsyres.2017.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/02/2017] [Accepted: 08/16/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Periventricular nodular heterotopia (PNH) is an important cause of chronic epilepsy. The purpose of this study was to evaluate region-specific connectivity in PNH patients with epilepsy and assess correlation between connectivity strength and clinical factors including duration and prognosis. METHODS Diffusion tensor imaging (DTI) and resting state functional MRI (fMRI) were performed in 28 subjects (mean age 27.4years; range 9-56years). The structural connectivity of fiber bundles passing through the manually-selected segmented nodules and other brain regions were analyzed by tractography. Cortical lobes showing functional correlations to nodules were also determined. RESULTS For all heterotopic gray matter nodules, including at least one in each subject, the most frequent segments to which nodular heterotopia showed structural (132/151) and functional (146/151) connectivity were discrete regions of the ipsilateral overlying cortex. Agreement between diffusion tensor tractography and functional connectivity analyses was conserved in 81% of all nodules (122/151). In patients with longer duration or refractory epilepsy, the connectivity was significantly stronger, particularly to the frontal and temporal lobes (P<0.05). CONCLUSIONS Nodules in PNH were structurally and functionally connected to the cortex. The extent is stronger in patients with longstanding or intractable epilepsy. These findings suggest the region-specific interactions may help better evaluate prognosis and seek medical or surgical interventions of PNH-related epilepsy.
Collapse
Affiliation(s)
- Wenyu Liu
- Departments of Neurology, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China.
| | - Dongmei An
- Departments of Neurology, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China.
| | - Xin Tong
- Departments of Neurology, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China.
| | - Running Niu
- Departments of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China.
| | - Qiyong Gong
- Departments of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China.
| | - Dong Zhou
- Departments of Neurology, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China.
| |
Collapse
|
18
|
Polster T, Schulz R, Woermann FG, Bernhard MK, Schmitt FC, Büntjen L, Voges J. Thermoablation bei nodulären Heterotopien. ZEITSCHRIFT FUR EPILEPTOLOGIE 2017. [DOI: 10.1007/s10309-017-0107-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
DeJesus A, Turek BJ, Galban E, Suran JN. IMAGING DIAGNOSIS-MAGNETIC RESONANCE IMAGING OF A NEURONAL HETEROTOPIA IN THE BRAIN OF A CAT. Vet Radiol Ultrasound 2016; 59:E17-E21. [PMID: 27896903 DOI: 10.1111/vru.12456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 09/29/2016] [Indexed: 11/27/2022] Open
Abstract
A domestic shorthair kitten was presented for evaluation and further treatment of seizures. Magnetic resonance imaging of the brain revealed a large multilobulated mass in the third ventricle extending into the right lateral ventricle with secondary obstructive hydrocephalus. The mass was homogeneously isointense to gray matter on T2W, T2-FLAIR, T2* W, T1W, and ADC images, and hyperintense on DW-EPI. There was no appreciable contrast enhancement. Seizures were managed medically and with subsequent ventriculoperitoneal shunt placement. Clinical status later deteriorated and the cat was euthanized. Histopathology confirmed that the mass was the result of neuronal heterotopia. To the authors' knowledge this is the first report of neuronal heterotopia in a cat.
Collapse
Affiliation(s)
- Antonia DeJesus
- BluePearl Veterinary Hospital, 410 W55th St, New York, NY, 10019
| | - Bradley J Turek
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA, 19104
| | - Evelyn Galban
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA, 19104
| | - Jantra Ngosuwan Suran
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA, 19104
| |
Collapse
|
20
|
Intracranial evaluation and laser ablation for epilepsy with periventricular nodular heterotopia. Seizure 2016; 41:211-6. [DOI: 10.1016/j.seizure.2016.06.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/11/2016] [Accepted: 06/23/2016] [Indexed: 11/13/2022] Open
|
21
|
Nazem-Zadeh MR, Bowyer SM, Moran JE, Davoodi-Bojd E, Zillgitt A, Weiland BJ, Bagher-Ebadian H, Mahmoudi F, Elisevich K, Soltanian-Zadeh H. MEG Coherence and DTI Connectivity in mTLE. Brain Topogr 2016; 29:598-622. [PMID: 27060092 PMCID: PMC5542022 DOI: 10.1007/s10548-016-0488-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/04/2016] [Indexed: 12/11/2022]
Abstract
Magnetoencephalography (MEG) is a noninvasive imaging method for localization of focal epileptiform activity in patients with epilepsy. Diffusion tensor imaging (DTI) is a noninvasive imaging method for measuring the diffusion properties of the underlying white matter tracts through which epileptiform activity is propagated. This study investigates the relationship between the cerebral functional abnormalities quantified by MEG coherence and structural abnormalities quantified by DTI in mesial temporal lobe epilepsy (mTLE). Resting state MEG data was analyzed using MEG coherence source imaging (MEG-CSI) method to determine the coherence in 54 anatomical sites in 17 adult mTLE patients with surgical resection and Engel class I outcome, and 17 age- and gender- matched controls. DTI tractography identified the fiber tracts passing through these same anatomical sites of the same subjects. Then, DTI nodal degree and laterality index were calculated and compared with the corresponding MEG coherence and laterality index. MEG coherence laterality, after Bonferroni adjustment, showed significant differences for right versus left mTLE in insular cortex and both lateral orbitofrontal and superior temporal gyri (p < 0.017). Likewise, DTI nodal degree laterality, after Bonferroni adjustment, showed significant differences for right versus left mTLE in gyrus rectus, insular cortex, precuneus and superior temporal gyrus (p < 0.017). In insular cortex, MEG coherence laterality correlated with DTI nodal degree laterality ([Formula: see text] in the cases of mTLE. None of these anatomical sites showed statistically significant differences in coherence laterality between right and left sides of the controls. Coherence laterality was in agreement with the declared side of epileptogenicity in insular cortex (in 82 % of patients) and both lateral orbitofrontal (88 %) and superior temporal gyri (88 %). Nodal degree laterality was also in agreement with the declared side of epileptogenicity in gyrus rectus (in 88 % of patients), insular cortex (71 %), precuneus (82 %) and superior temporal gyrus (94 %). Combining all significant laterality indices improved the lateralization accuracy to 94 % and 100 % for the coherence and nodal degree laterality indices, respectively. The associated variations in diffusion properties of fiber tracts quantified by DTI and coherence measures quantified by MEG with respect to epileptogenicity possibly reflect the chronic microstructural cerebral changes associated with functional interictal activity. The proposed methodology for using MEG and DTI to investigate diffusion abnormalities related to focal epileptogenicity and propagation may provide a further means of noninvasive lateralization.
Collapse
Affiliation(s)
| | - Susan M. Bowyer
- Neurology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - John E. Moran
- Neurology, Henry Ford Health System, Detroit, MI, 48202, USA
| | | | - Andrew Zillgitt
- Neurology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Barbara J. Weiland
- Institute of Cognitive Science University of Colorado Boulder, Boulder, CO, 80309 USA,
| | - Hassan Bagher-Ebadian
- Research Administration, Henry Ford Health System, Detroit, MI, 48202, USA
- Radiation Oncology Departments, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Fariborz Mahmoudi
- Research Administration, Henry Ford Health System, Detroit, MI, 48202, USA
- Computer and IT engineering Faculty, Islamic Azad University, Qazvin Branch, Iran
| | - Kost Elisevich
- Department of Clinical Neurosciences, Spectrum Health System, Division of Neurosurgery, Michigan State University, Grand Rapids, MI, 49503, USA,
| | - Hamid Soltanian-Zadeh
- Research Administration, Henry Ford Health System, Detroit, MI, 48202, USA
- Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran,
| |
Collapse
|
22
|
Doisy ET, Wenzel HJ, Mu Y, Nguyen DV, Schwartzkroin PA. Nodule excitability in an animal model of periventricular nodular heterotopia: c-fos activation in organotypic hippocampal slices. Epilepsia 2015; 56:626-35. [PMID: 25752321 DOI: 10.1111/epi.12945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Aberrations in brain development may lead to dysplastic structures such as periventricular nodules. Although these abnormal collections of neurons are often associated with difficult-to-control seizure activity, there is little consensus regarding the epileptogenicity of the nodules themselves. Because one common treatment option is surgical resection of suspected epileptic nodules, it is important to determine whether these structures in fact give rise, or essentially contribute, to epileptic activities. METHODS To study the excitability of aberrant nodules, we have examined c-fos activation in organotypic hippocampal slice cultures generated from an animal model of periventricular nodular heterotopia created by treating pregnant rats with methylazoxymethanol acetate. Using this preparation, we have also attempted to assess tissue excitability when the nodule is surgically removed from the culture. We then compared c-fos activation in this in vitro preparation to c-fos activation generated in an intact rat treated with kainic acid. RESULTS Quantitative analysis of c-fos activation failed to show enhanced nodule excitability compared to neocortex or CA1 hippocampus. However, when we compared cultures with and without a nodule, presence of a nodule did affect the excitability of CA1 and cortex, at least as reflected in c-fos labeling. Surgical removal of the nodule did not result in a consistent decrease in excitability as reflected in the c-fos biomarker. SIGNIFICANCE Our results from the organotypic culture were generally consistent with our observations on excitability in the intact rat-as seen not only with c-fos but also in previous electrophysiologic studies. At least in this model, the nodule does not appear to be responsible for enhanced excitability (or, presumably, seizure initiation). Excitability is different in tissue that contains a nodule, suggesting altered network function, perhaps reflecting the abnormal developmental pattern that gave rise to the nodule.
Collapse
Affiliation(s)
- Emily T Doisy
- Department of Neurological Surgery, University of California, Davis, Davis, California, U.S.A
| | | | | | | | | |
Collapse
|
23
|
Chaudhary UJ, Duncan JS. Applications of blood-oxygen-level-dependent functional magnetic resonance imaging and diffusion tensor imaging in epilepsy. Neuroimaging Clin N Am 2014; 24:671-94. [PMID: 25441507 DOI: 10.1016/j.nic.2014.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The lifetime prevalence of epilepsy ranges from 2.7 to 12.4 per 1000 in Western countries. Around 30% of patients with epilepsy remain refractory to antiepileptic drugs and continue to have seizures. Noninvasive imaging techniques such as functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) have helped to better understand mechanisms of seizure generation and propagation, and to localize epileptic, eloquent, and cognitive networks. In this review, the clinical applications of fMRI and DTI are discussed, for mapping cognitive and epileptic networks and organization of white matter tracts in individuals with epilepsy.
Collapse
Affiliation(s)
- Umair J Chaudhary
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; MRI Unit, Epilepsy Society, Chesham Lane, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK.
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; MRI Unit, Epilepsy Society, Chesham Lane, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK; Queen Square Division, UCLH NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
24
|
Watrin F, Manent JB, Cardoso C, Represa A. Causes and consequences of gray matter heterotopia. CNS Neurosci Ther 2014; 21:112-22. [PMID: 25180909 DOI: 10.1111/cns.12322] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 07/30/2014] [Accepted: 08/06/2014] [Indexed: 12/17/2022] Open
Abstract
The objective of this article is to review the pathophysiological bases of gray matter heterotopia and to appreciate their involvement in brain cortical development and functional consequences, namely epilepsy. The development of the cerebral cortex results from complex sequential processes including cell proliferation, cell migration, cortical organization, and formation of neuronal networks. Disruption of these steps yields different types of cortical malformations including gray matter heterotopia, characterized by the ectopic position of neurons along the ventricular walls or in the deep white matter. Cortical malformations are major causes of epilepsy, being responsible for up to 40% of drug-resistant epilepsy, and the cognitive level of affected patients varies from normal to severely impaired. This review reports data from human patients and animal models highlighting the genetic causes for these disorders affecting not only neuronal migration but also the proliferation of cortical progenitors. Therefore, gray matter heterotopias should not be considered as solely due to an abnormal neuronal migration and classifying them as such may be too restrictive. The review will also summarize literature data indicating that besides ectopic neurons, neighbor cortical areas also play a consistent role in epileptogenesis, supporting the notion that plastic changes secondary to the initial malformation are instrumental in the pathophysiology of epilepsy in affected patients.
Collapse
Affiliation(s)
- Françoise Watrin
- INSERM, INMED, Marseille, France; Aix-Marseille University, UMR 901, Marseille, France
| | | | | | | |
Collapse
|
25
|
Abstract
Epilepsy is the most common serious neurological disease. Seizures are refractory to medication in approximately 30% of patients with focal epilepsy, and surgical treatment is potentially curative should the epileptic focus be accurately localized. MRI has revolutionized the investigation of such patients; however, up to 20% of patients with refractory focal epilepsy have an undetermined etiological basis for their epilepsy despite extensive investigation. Diffusion imaging is an advanced MRI technique that is sensitive to the molecular displacement of water molecules and provides additional information on the microstructural arrangement of tissue. Both qualitative and quantitative analyses of the interictal and peri-ictal states are possible and provide valuable insights into the epileptic brain in vivo. Furthermore, advanced postacquisition processing can reveal additional information on, for example, anatomical connectivity. The description, application and limitations of diffusion imaging in epilepsy are the focus of this review. Future directions of research required in this area are also discussed in the context of existing literature.
Collapse
Affiliation(s)
- Fergus J Rugg-Gunn
- Institute of Neurology, Department of Clinical & Experimental Epilepsy, University College London, Queen Square, London, UK.
| |
Collapse
|
26
|
Abstract
Magnetoencephalography (MEG) is a functional modality to register magnetic brain activity with high spatiotemporal resolution. Since distortion of magnetic fields by the skin, skull and cerebrospinal fluids is negligible, the technique offers an almost undistorted view on brain activity. While MEG systems are still expensive and complex, the technique's characteristics offer promising possibilities for the investigation of epilepsy patients, for example, for focus localization and presurgical functional mapping. This review gives an overview of the method and discusses advantages and limitations in the clinical context of presurgical epilepsy diagnosis.
Collapse
Affiliation(s)
- Stefan Rampp
- Epilepsy Center (ZEE), Department of Neurology, University Hospital, Schwabachanlage 6, 91054 Erlangen, Germany.
| | | |
Collapse
|
27
|
Magnetic resonance diffusion tensor imaging metrics in perilesional white matter among children with periventricular nodular gray matter heterotopia. Pediatr Radiol 2013; 43:1196-203. [PMID: 23529629 DOI: 10.1007/s00247-013-2677-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/08/2013] [Accepted: 02/12/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND Despite pharmacological and surgical interventions, some children with periventricular nodular heterotopia (PNH) remain refractory to treatment, which suggests more diffuse pathology potentially involving perilesional white matter. OBJECTIVE The purpose of this study was to evaluate MR diffusion tensor imaging (MRDTI) metrics within perilesional white matter in children with PNH. MATERIALS AND METHODS Six children with PNH (four boys; average age 3.2 years, range 2 months to 6 years) were studied with MRDTI at 3 T. Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) were quantified within perilesional white matter at distances of 5 mm, 10 mm, 15 mm, and 20 mm from focal areas of PNH and compared to location-matched ROIs in six healthy control patients (two boys, average age 3.3 years, range 2-6 years). Statistical significance was set at an overall level of α = 0.05, corrected for multiple comparisons. RESULTS Perilesional white matter showed significantly decreased fractional anisotropy and elevated mean and radial diffusivity at all evaluated distances. No significant differences in axial diffusivity were detected at any distance. CONCLUSION PNH is associated with microstructural white matter abnormalities as indicated by abnormal perilesional MRDTI metrics detectable at least 20 mm from visible nodular lesions.
Collapse
|
28
|
Stefan H, Lopes da Silva FH. Epileptic neuronal networks: methods of identification and clinical relevance. Front Neurol 2013; 4:8. [PMID: 23532203 PMCID: PMC3607195 DOI: 10.3389/fneur.2013.00008] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/24/2013] [Indexed: 11/13/2022] Open
Abstract
The main objective of this paper is to examine evidence for the concept that epileptic activity should be envisaged in terms of functional connectivity and dynamics of neuronal networks. Basic concepts regarding structure and dynamics of neuronal networks are briefly described. Particular attention is given to approaches that are derived, or related, to the concept of causality, as formulated by Granger. Linear and non-linear methodologies aiming at characterizing the dynamics of neuronal networks applied to EEG/MEG and combined EEG/fMRI signals in epilepsy are critically reviewed. The relevance of functional dynamical analysis of neuronal networks with respect to clinical queries in focal cortical dysplasias, temporal lobe epilepsies, and "generalized" epilepsies is emphasized. In the light of the concepts of epileptic neuronal networks, and recent experimental findings, the dichotomic classification in focal and generalized epilepsy is re-evaluated. It is proposed that so-called "generalized epilepsies," such as absence seizures, are actually fast spreading epilepsies, the onset of which can be tracked down to particular neuronal networks using appropriate network analysis. Finally new approaches to delineate epileptogenic networks are discussed.
Collapse
Affiliation(s)
- Hermann Stefan
- Department of Neurology, University Hospital ErlangenErlangen, Bavaria, Germany
| | - Fernando H. Lopes da Silva
- Centre of Neuroscience, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
- Department of Bioengineering, Instituto Superior Técnico, Lisbon Technical UniversityLisbon, Portugal
| |
Collapse
|
29
|
Pascher B, Kröll J, Mothersill I, Krämer G, Huppertz HJ. Automated morphometric magnetic resonance imaging analysis for the detection of periventricular nodular heterotopia. Epilepsia 2013; 54:305-13. [DOI: 10.1111/epi.12054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
|
31
|
Affiliation(s)
- Roberto Spreafico
- Department of Research and Diagnostics, IRCCS Foundation Istituto Neurologico C. Besta, Milan, Italy.
| | | |
Collapse
|
32
|
Acar G, Acar F, Oztura I, Baklan B. A case report of surgically treated drug resistant epilepsy associated with subependymal nodular heterotopia. Seizure 2011; 21:223-6. [PMID: 22153995 DOI: 10.1016/j.seizure.2011.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/11/2011] [Accepted: 11/13/2011] [Indexed: 10/14/2022] Open
Abstract
Subependymal nodular heterotopia (SNH) is a cortical development malformation that is commonly associated with medically resistant epilepsy. Cases of SNH are challenging to treat surgically because there are typically multiple nodules, which may be involved in epileptogenesis. Moreover, dual pathology may exist in these patients. Here, we present a case with unilateral subependymal heterotopic nodules associated with ipsilateral hippocampal atrophy. Invasive and non-invasive work-ups revealed that the hippocampus was the actual ictal onset zone and that the SNH was not involved. An anterior temporal lobectomy was carried out, and postoperative seizure outcome was class Ia at the end of 2 years. The case demonstrates that SNH may not play a major role in patients with dual pathology. However, direct electroencephalography (EEG) recording from areas of SNH and other possible epileptogenic regions is indispensable in defining the ictal onset zone and avoiding poor surgical outcomes.
Collapse
Affiliation(s)
- Göksemin Acar
- Pamukkale University, Department of Neurology, Denizli, Turkey.
| | | | | | | |
Collapse
|
33
|
Tschuluun N, Jürgen Wenzel H, Doisy ET, Schwartzkroin PA. Initiation of epileptiform activity in a rat model of periventricular nodular heterotopia. Epilepsia 2011; 52:2304-14. [PMID: 21933177 DOI: 10.1111/j.1528-1167.2011.03264.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE Periventricular nodular heterotopia (PNH) is, in humans, often associated with difficult-to-control epilepsy. However, there is considerable controversy about the role of the PNH in seizure generation and spread. To study this issue, we have used a rat model in which injection of methylazoxymethanol (MAM) into pregnant rat dams produces offspring with nodular heterotopia-like brain abnormalities. METHODS Electrophysiologic methods were used to examine the activity of the MAM-induced PNH relative to activity in the neighboring hippocampus and overlying neocortex. Recordings were obtained simultaneously from these three structures in slice preparations from MAM-exposed rats and in intact animals. Bath application or systemic injection of bicuculline was used to induce epileptiform activity. KEY FINDINGS In the in vitro slice, epileptiform discharge was generally initiated in hippocampus. In some cases, independent PNH discharge occurred, but the PNH never "led" discharges in hippocampus or neocortex. Intracellular recordings from PNH neurons confirmed that these cells received synaptic drive from both hippocampus and neocortex, and sent axonal projections to these structures-consistent with anatomic observations of biocytin-injected PNH cells. In intact animal preparations, bicuculline injection resulted in epileptiform discharge in all experiments, with a period of ictal-like electrographic activity typically initiated within 2-3 min after drug injection. In almost all animals, the onset of ictus was seen synchronously across PNH, hippocampal, and neocortical electrodes; in a few cases, the PNH electrode (histologically confirmed) did not participate, but in no case was activity initiated in the PNH electrode. Interictal discharge was also synchronized across all three electrodes; again, the PNH never "led" the other two electrodes, and typically followed (onset several milliseconds after hippocampal/neocortical discharge onset). SIGNIFICANCE These results do not support the hypothesis that the PNH lesion is the primary epileptogenic site, since it does not initiate or lead epileptiform activity that subsequently propagates to other brain regions.
Collapse
Affiliation(s)
- Naranzogt Tschuluun
- Department of Neurological Surgery, University of California-Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|
34
|
Stefan H, Rampp S, Knowlton RC. Magnetoencephalography adds to the surgical evaluation process. Epilepsy Behav 2011; 20:172-7. [PMID: 20934391 DOI: 10.1016/j.yebeh.2010.09.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 09/08/2010] [Indexed: 11/25/2022]
Abstract
Summarizing the podium discussion at the AES 2009, strengths and limitations of magnetoencephalography (MEG) are discussed with regard to basic methodological and clinical aspects in routine screening and presurgical evaluation of patients with epilepsies. Current literature and example cases are used to illustrate MEG contribution to clinical decision making, specifically whether a patient with pharmacoresistant epilepsy can move forward to epilepsy surgery. The main conclusion is that the largest role of MEG, as presently performed in the clinical environment, is to increase the number of patients who can go on to surgery, while it should not be used to deny surgery to any patient.
Collapse
Affiliation(s)
- H Stefan
- Epilepsy Center, Neurological Clinic, University Hospital Erlangen-Nuremberg at Erlangen, Erlangen, Germany.
| | | | | |
Collapse
|
35
|
|
36
|
Tyvaert L, Hawco C, Kobayashi E, LeVan P, Dubeau F, Gotman J. Different structures involved during ictal and interictal epileptic activity in malformations of cortical development: an EEG-fMRI study. ACTA ACUST UNITED AC 2008; 131:2042-60. [PMID: 18669486 DOI: 10.1093/brain/awn145] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Malformations of cortical development (MCDs) are commonly complicated by intractable focal epilepsy. Epileptogenesis in these disorders is not well understood and may depend on the type of MCD. The cellular mechanisms involved in interictal and ictal events are notably different, and could be influenced independently by the type of pathology. We evaluated the relationship between interictal and ictal zones in eight patients with different types of MCD in order to better understand the generation of these activities: four had nodular heterotopia, two focal cortical dysplasia and two subcortical band heterotopia (double-cortex). We used the non-invasive EEG-fMRI technique to record simultaneously all cerebral structures with a high spatio-temporal resolution. We recorded interictal and ictal events during the same session. Ictal events were either electrical only or clinical with minimal motion. BOLD changes were found in the focal cortical dysplasia during interictal and ictal epileptiform events in the two patients with this disorder. Heterotopic and normal cortices were involved in BOLD changes during interictal and ictal events in the two patients with double cortex, but the maximum BOLD response was in the heterotopic band in both patients. Only two of the four patients with nodular heterotopia showed involvement of a nodule during interictal activity. During seizures, although BOLD changes affected the lesion in two patients, the maximum was always in the overlying cortex and never in the heterotopia. For two patients intracranial recordings were available and confirm our findings. The dysplastic cortex and the heterotopic cortex of band heterotopia were involved in interictal and seizure processes. Even if the nodular gray matter heterotopia may have the cellular substrate to produce interictal events, the often abnormal overlying cortex is more likely to be involved during the seizures. The non-invasive BOLD study of interictal and ictal events in MCD patients may help to understand the role of the lesion in epileptogenesis and also determine the potential surgical target.
Collapse
Affiliation(s)
- L Tyvaert
- Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, Canada H3A 2B4.
| | | | | | | | | | | |
Collapse
|