1
|
Kurekci F, Akif Kilic M, Akbas S, Avci R, Oney C, Dilruba Aslanger A, Maras Genc H, Aydinli N, Pembegul Yildiz E. Voltage-gated sodium channel epilepsies in a tertiary care center: Phenotypic spectrum with correlation to predicted functional effects. Epilepsy Behav 2024; 158:109930. [PMID: 38964184 DOI: 10.1016/j.yebeh.2024.109930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Variants in sodium channel genes (SCN) are strongly associated with epilepsy phenotypes. Our aim in this study to evaluate the genotype and phenotype correlation of patients with SCN variants in our tertiary care center. METHODS In this retrospective study, patients with SCN variants and epilepsy who were followed up at our clinic between 2018 and 2022 were evaluated. Our study discussed the demographics of the patients, the seizure types, the age of seizure onset, the SCN variants, the domains and the functions of the variants, the magnetic resonance imaging findings, the motor, cognitive, and psychiatric comorbidities, and the response to anti-seizure medication. Genetic testing was conducted using a next-generation sequencing gene panel (epilepsy panel) or a whole-exome sequencing. For evaluating variant function, we used a prediction tool (https://funnc.shinyapps.io/shinyappweb/ site). To assess protein domains, we used the PER viewer (http://per.broadinstitute.org/). RESULTS Twenty-three patients with SCN variants and epilepsy have been identified. Sixteen patients had variants in the SCN1A, six patients had variants in the SCN2A, and one patient had a variant in the SCN3A. Two novel SCN1A variants and two novel SCN2A variants were identified. The analysis revealed 14/23 missense, 6/23 nonsense, 2/23 frameshift, and 1/23 splice site variants in the SCN. There are seven variants predicted to be gain-of-function and 13 predicted to be loss-of-function. Among 23 patients; 11 had Dravet Syndrome, 6 had early infantile developmental and epileptic encephalopathy, three had genetic epilepsy with febrile seizures plus spectrum disorder, one had self-limited familial neonatal-infantile epilepsy, one had self-limited infantile epilepsy and one had infantile childhood development epileptic encephalopathy. CONCLUSION Our cohort consists of mainly SCN1 variants, most of them were predicted to be loss of function. Dravet syndrome was the most common phenotype. The prediction tool used in our study demonstrated overall compatibility with clinical findings. Due to the diverse clinical manifestations of variant functions, it may assist in guiding medication selection and predicting outcomes. We believe that such a tool will help the clinician in both prognosis prediction and solving therapeutic challenges in this group where refractory seizures are common.
Collapse
Affiliation(s)
- Fulya Kurekci
- Department of Pediatrics, Division of Pediatric Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkiye.
| | - Mehmet Akif Kilic
- Department of Pediatrics, Division of Pediatric Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkiye
| | - Sinan Akbas
- Department of Medical Genetics, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkiye
| | - Rıdvan Avci
- Department of Pediatrics, Division of Pediatric Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkiye
| | - Ceyda Oney
- Department of Pediatrics, Division of Pediatric Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkiye
| | - Ayca Dilruba Aslanger
- Department of Medical Genetics, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkiye
| | - Hulya Maras Genc
- Department of Pediatrics, Division of Pediatric Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkiye
| | - Nur Aydinli
- Department of Pediatrics, Division of Pediatric Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkiye
| | - Edibe Pembegul Yildiz
- Department of Pediatrics, Division of Pediatric Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkiye
| |
Collapse
|
2
|
Çapan ÖY, Yapıcı Z, Özbil M, Çağlayan HS. Exome data of developmental and epileptic encephalopathy patients reveals de novo and inherited pathologic variants in epilepsy-associated genes. Seizure 2024; 116:51-64. [PMID: 37353388 DOI: 10.1016/j.seizure.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/04/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023] Open
Abstract
PURPOSE In Developmental and Epileptic Encephalopathies (DEEs), identifying the precise genetic factors guides the clinicians to apply the most appropriate treatment for the patient. Due to high locus heterogeneity, WES analysis is a promising approach for the genetic diagnosis of DEE. Therefore, the aim of the present study is to evaluate the utility of WES in the diagnosis and treatment of DEE patients. METHODS The exome data of 29 DEE patients were filtrated for destructive and missense mutations in 1896 epilepsy-related genes to detect the causative variants and examine the genotype-phenotype correlations. We performed Sanger sequencing with the available DNA samples to follow the co-segregation of the variants with the disease phenotype in the families. Also, the structural effects of p.Asn1053Ser, p.Pro120Ser and p.Glu1868Gly mutations on KCNMA1, NPC2, and SCN2A proteins, respectively, were evaluated by molecular dynamics (MD) and molecular docking simulations. RESULTS Out of 29, nine patients (31%) harbor pathological (P) or likely pathological (LP) mutations in SCN2A, KCNQ2, ATP1A2, KCNMA1, and MECP2 genes, and three patients have VUS variants (10%) in SCN1A and SCN2A genes. Sanger sequencing results indicated that three of the patients have de novo mutations while eight of them carry paternally and/or maternally inherited causative variants. MD and molecular docking simulations supported the destructive effects of the mutations on KCNMA1, NPC2, and SCN2A protein structures. CONCLUSION Herein we demonstrated the effectiveness of WES for DEE with high locus heterogeneity. Identification of the genetic etiology guided the clinicians to adjust the proper treatment for the patients.
Collapse
Affiliation(s)
- Özlem Yalçın Çapan
- Department of Medical Biology, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey; Department of Molecular Biology and Genetics, İstanbul Arel University, İstanbul, Turkey.
| | - Zuhal Yapıcı
- Division of Child Neurology, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mehmet Özbil
- Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkiye
| | - Hande S Çağlayan
- Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Turkey (formerly)
| |
Collapse
|
3
|
Polymorphisms of the sodium voltage-gated channel, alpha subunit 1 (SCN1A -A3184G) gene among children with non-lesional epilepsy: a case-control study. Ital J Pediatr 2022; 48:157. [PMID: 36056404 PMCID: PMC9438243 DOI: 10.1186/s13052-022-01350-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Background Mutations in the neuronal sodium voltage-gated channel, alpha subunit 1 (SCN1A) gene have been associated with epilepsy. We investigated the SCN1A-A3184G polymorphism among Egyptian children and adolescents with non-lesional epilepsy. Methods A prospective case – control observational study was done in Mansoura University Children’s Hospital, Egypt including 326 children with non-lesional epilepsy (163 antiepileptic drugs (AEDs) resistant cases & 163 AEDs responders) and 163 healthy controls. One step real time polymerase chain reaction (PCR) was used for the molecular analysis. Student’s t-test, and Monto Carlo, chi-square and Mann–Whitney tests were used for the statistical analysis. Results All study participants were matched as regards the age, sex and body weight (p = 0.07, 0.347 and 0.462, respectively). They had the (AA) and (AG) genotypes but not the (GG) variant. No significant differences were found between cases and controls regarding (AG) and (AA) genotypes and A- and G-alleles (p = 0.09 and 0.3, respectively). We did not find significant differences between AEDs responders and resistant cases regarding the studied genotypes and alleles (p = 0.61 and 0.746, respectively). In the resistant group, we observed significant associations between the (AG) genotype and seizure frequency (p = 0.05), the tonic-clonic seizure (p < 0.001), the younger age of first seizure attack (p = 0.03), abnormal electroencephalogram (EEG) (p < 0.001), the positive family history of epilepsy (p = 0.006), topiramate (p = 0.03) and valproic acid (p < 0.001), while the (AA) genotype was associated with carbamazepine (p = 0.03). While in AEDs responders, there were significant associations between the AG genotype and the abnormal EEG activity, levetiracetam and carbamazepine (p = 0.016, 0.028 and 0.02). Conclusions The SCN1A-A3184G genotypes and alleles were not associated with the epilepsy risk among Egyptian children. Significant associations were reported between the AG genotype and some predictors of refractory epilepsy.
Collapse
|
4
|
Wang JY, Tang B, Sheng WX, Hua LD, Zeng Y, Fan CX, Deng WY, Gao MM, Zhu WW, He N, Su T. Clinical and Functional Features of Epilepsy-Associated In-Frame Deletion Variants in SCN1A. Front Mol Neurosci 2022; 15:828846. [PMID: 35359575 PMCID: PMC8964123 DOI: 10.3389/fnmol.2022.828846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Naturally occurring in-frame deletion is a unique type of genetic variations, causing the loss of one or more amino acids of proteins. A number of in-frame deletion variants in an epilepsy-associated gene SCN1A, encoding voltage gated sodium channel alpha unit 1.1 (Nav1.1), have been reported in public database. In contrast to the missense and truncation variants, the in-frame deletions in SCN1A remains largely uncharacterized. Methods We summarized the basic information of forty-four SCN1A in-frame deletion variants and performed further analysis on six variants identified in our cases with epilepsy. Mutants of the six in-frame deletions and one truncating variant used as comparison were generated and co-transfected with beta-1 and -2 subunits in tsA201 cells, followed by patch clamp recordings. Results Reviewing all the in-frame deletions showed that they spread over the entire Nav1.1 protein, without obvious “hot spots.” The dominant type (54%) was single residue loss. There was no obvious relationship between the length or locations of deletions and their clinical phenotypes. The six in-frame deletions were two single residue deletions (p.M400del and p.I1772del), one microdeletion (p.S128_F130del) and three macrodeletions (p.T303_R322del, p.T160_Y202del, and p.V1335_V1428del). They scatter and affect different functional domains, including transmembrane helices, pore region, and P-loop. Electrophysiological recordings revealed no measurable sodium current in all of the six mutants. In contrast, the truncating mutant p.M1619Ifs*7 that loses a long stretch of peptides retains partial function. Significance The complete loss-of-function in these shortened, abnormal mutants indicates that Nav1.1 protein is a highly accurate structure, and many of the residues have no redundancy to ion conductance. In-frame deletions caused particularly deleterious effect on protein function possibly due to the disruption of ordered residues.
Collapse
Affiliation(s)
- Jing-Yang Wang
- Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies, Ministry of Education of China, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Tang
- Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies, Ministry of Education of China, Guangzhou, China
| | - Wen-Xiang Sheng
- Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies, Ministry of Education of China, Guangzhou, China
| | - Li-Dong Hua
- Translational Medicine Center, Maternal and Child Health Research Institute, Guangdong Women and Children’s Hospital, Guangzhou, China
| | - Yang Zeng
- Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies, Ministry of Education of China, Guangzhou, China
| | - Cui-Xia Fan
- Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies, Ministry of Education of China, Guangzhou, China
| | - Wei-Yi Deng
- Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies, Ministry of Education of China, Guangzhou, China
| | - Mei-Mei Gao
- Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies, Ministry of Education of China, Guangzhou, China
| | - Wei-Wen Zhu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Na He
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tao Su
- Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies, Ministry of Education of China, Guangzhou, China
- *Correspondence: Tao Su,
| |
Collapse
|
5
|
Naseer MI, Abdulkareem AA, Rasool M, Algahtani H, Muthaffar OY, Pushparaj PN. Whole-Exome Sequencing Identifies Novel SCN1A and CACNB4 Genes Mutations in the Cohort of Saudi Patients With Epilepsy. Front Pediatr 2022; 10:919996. [PMID: 35813387 PMCID: PMC9257097 DOI: 10.3389/fped.2022.919996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/25/2022] [Indexed: 12/14/2022] Open
Abstract
Epilepsy is a neurological disorder described as recurrent seizures mild to severe convulsions along with conscious loss. There are many different genetic anomalies or non-genetic conditions that affect the brain and cause epilepsy. The exact cause of epilepsy is unknown so far. In this study, whole-exome sequencing showed a family having novel missense variant c.1603C>T, p. Arg535Cys in exon 10 of Sodium Voltage-Gated Channel Alpha Subunit 1 (SCN1A) gene. Moreover, targeted Sanger sequencing analysis showed c.1212A>G p.Val404Ile in SCN1A gene in 10 unrelated patients and a mutation in Calcium Voltage-Gated Channel Auxiliary Subunit Beta 4 gene where one base pair insertion of "G" c.78_79insG, p.Asp27Glyfs*26 in the exon 3 in three different patients were observed from the cohort of 25 epileptic sporadic cases. The insertion changes the amino acid sequence leading to a frameshift mutation. Here, we have described, for the first time, three novel mutations that may be associated with epilepsy in the Saudi population. The study not only help us to identify the exact cause of genetic variations causing epilepsy whereas but it would also eventually enable us to establish a database to provide a foundation for understanding the critical genomic regions to control epilepsy in Saudi patients.
Collapse
Affiliation(s)
- Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Angham Abdulrhman Abdulkareem
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hussein Algahtani
- King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Osama Yousef Muthaffar
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Sullo F, Pasquetti E, Patanè F, Lo Bianco M, Marino SD, Polizzi A, Falsaperla R, Ruggieri M, Zanghì A, Praticò AD. SCN1A and Its Related Epileptic Phenotypes. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractEpilepsy is one of the most common neurological disorders, with a lifetime incidence of 1 in 26. Approximately two-thirds of epilepsy has a substantial genetic component in its etiology. As a result, simultaneous screening for mutations in multiple genes and performing whole exome sequencing (WES) are becoming very frequent in the clinical evaluation of children with epilepsy. In this setting, mutations in voltage-gated sodium channel (SCN) α-subunit genes are the most commonly identified cause of epilepsy, with sodium channel genes (i.e., SCN1A, SCN2A, SCN8A) being the most frequently identified causative genes. SCN1A mutations result in a wide spectrum of epilepsy phenotypes ranging from simple febrile seizures to Dravet syndrome, a severe epileptic encephalopathy. In case of mutation of SCN1A, it is also possible to observe behavioral alterations, such as impulsivity, inattentiveness, and distractibility, which can be framed in an attention deficit hyperactivity disorder (ADHD) like phenotype. Despite more than 1,200 SCN1A mutations being reported, it is not possible to assess a clear phenotype–genotype correlations. Treatment remains a challenge and seizure control is often partial and transitory.
Collapse
Affiliation(s)
- Federica Sullo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Elisa Pasquetti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesca Patanè
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Manuela Lo Bianco
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Simona D. Marino
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Martino Ruggieri
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
7
|
Ngo TTD, Lea RA, Maksemous N, Eccles DA, Smith RA, Dunn PJ, Thao VC, Ha TMT, Bùi CB, Haupt LM, Scott R, Griffiths LR. The MinION as a cost-effective technology for diagnostic screening of the SCN1A gene in epilepsy patients. Epilepsy Res 2021; 172:106593. [PMID: 33721710 DOI: 10.1016/j.eplepsyres.2021.106593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 11/18/2022]
Abstract
The MinION is a portable DNA sequencer that allows real time sequencing at low capital cost investment. We assessed accuracy and cost-effectivess of the MinION for genetic diagnostic testing of known SCN1A mutations that cause Dravet Syndrome (DS). DNA samples (n = 7) from DS patients previously shown to carry SCN1A mutations via Ion Torrent and Sanger sequencing were sequenced using the MinION. SCN1A amplicons for 8 exons were sequenced using the MinION with 1D chemistry on an R9.4 flow cell. All known missense mutations were detected in all samples showing 100 % concordance with results from other methods. However, the MinION failed to detect the insertions/deletions (INDELs) present in these patients. Nevertheless, these results indicate that MinION is a cost-effective platform for use as an initial screening step in the detection of nucleotide substitution mutations in in SCN1A, especially in under-resourced laboratories or hospitals. Further improvements are required to reliably detect INDELS in this gene.
Collapse
Affiliation(s)
- Thi Tuyet Dieu Ngo
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia; Department of Physiology, Hue University of Medicine and Pharmacy, Hue University, Hue, Viet Nam
| | - Rodney A Lea
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia; Hunter Medical Research Institute, School of Biomedical Sciences, Newcastle, Australia.
| | - Neven Maksemous
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - David A Eccles
- The Malaghan Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Robert A Smith
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Paul J Dunn
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Van Cao Thao
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Thi Minh Thi Ha
- Department of Medical Genetics, Hue University of Medicine and Pharmacy, Hue University, Hue, Viet Nam
| | - Chi Bao Bùi
- School of Medicine, Vietnam National University, Ho Chi Min City, Viet Nam
| | - Larisa M Haupt
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Rodney Scott
- Hunter Medical Research Institute, School of Biomedical Sciences, Newcastle, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Menezes LFS, Sabiá Júnior EF, Tibery DV, Carneiro LDA, Schwartz EF. Epilepsy-Related Voltage-Gated Sodium Channelopathies: A Review. Front Pharmacol 2020; 11:1276. [PMID: 33013363 PMCID: PMC7461817 DOI: 10.3389/fphar.2020.01276] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022] Open
Abstract
Epilepsy is a disease characterized by abnormal brain activity and a predisposition to generate epileptic seizures, leading to neurobiological, cognitive, psychological, social, and economic impacts for the patient. There are several known causes for epilepsy; one of them is the malfunction of ion channels, resulting from mutations. Voltage-gated sodium channels (NaV) play an essential role in the generation and propagation of action potential, and malfunction caused by mutations can induce irregular neuronal activity. That said, several genetic variations in NaV channels have been described and associated with epilepsy. These mutations can affect channel kinetics, modifying channel activation, inactivation, recovery from inactivation, and/or the current window. Among the NaV subtypes related to epilepsy, NaV1.1 is doubtless the most relevant, with more than 1500 mutations described. Truncation and missense mutations are the most observed alterations. In addition, several studies have already related mutated NaV channels with the electrophysiological functioning of the channel, aiming to correlate with the epilepsy phenotype. The present review provides an overview of studies on epilepsy-associated mutated human NaV1.1, NaV1.2, NaV1.3, NaV1.6, and NaV1.7.
Collapse
Affiliation(s)
- Luis Felipe Santos Menezes
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Elias Ferreira Sabiá Júnior
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Diogo Vieira Tibery
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Lilian Dos Anjos Carneiro
- Faculdade de Medicina, Centro Universitário Euro Americano, Brasília, Brazil.,Faculdade de Medicina, Centro Universitário do Planalto Central, Brasília, Brazil
| | - Elisabeth Ferroni Schwartz
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
9
|
Sahli M, Zrhidri A, Elaloui SC, Smaili W, Lyahyai J, Oudghiri FZ, Sefiani A. Clinical exome sequencing identifies two novel mutations of the SCN1A and SCN2A genes in Moroccan patients with epilepsy: a case series. J Med Case Rep 2019; 13:266. [PMID: 31439038 PMCID: PMC6706917 DOI: 10.1186/s13256-019-2203-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/17/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Epilepsy is the most common neurological disorder that causes spontaneous, unprovoked, and recurrent seizures. Epilepsy is clinically and genetically heterogeneous with various modes of inheritance. The complexity of epilepsy presents a challenge and identification of the causal genetic mutation allows diagnosis, genetic counseling, predicting prognosis, and, in some cases, treatment decisions. Clinical exome sequencing is actually becoming a powerful approach for molecular diagnosis of heterogeneous neurological disorders in clinical practice. CASE PRESENTATION We report our observations of three unrelated Moroccan patients referred to our genetics department for molecular diagnosis of epilepsy: a 4-year-old Moroccan boy, a 3-year-old Moroccan girl, and a 7-year-old Moroccan boy. Due to the heterogeneity and complexity of epilepsy, we performed clinical exome sequencing followed by targeted analysis of 936 epilepsy genes. A total of three mutations were identified in known epilepsy genes (SCN1A, SCN2A). By clinical exome sequencing, we identified two novel mutations: c.4973C>A (p.Thr1658Lys) in SCN1A gene and c.1283A>G (p.Tyr428Cys) in the SCN2A gene, whereas the third mutation c.3295G>T (p.Glu1099*) was already described in patients with Dravet syndrome. CONCLUSION This study demonstrates that clinical exome sequencing is an effective diagnosis tool to investigate this group of diseases with huge diversity and defends its use in clinical routine.
Collapse
Affiliation(s)
- Maryem Sahli
- Centre de Recherche en Génomique des Pathologies Humaines (GENOPATH), Faculté de Médecine et de Pharmacie, Mohammed V University of Rabat, 10100 Rabat, Morocco
- Département de génétique médicale, Institut National d’Hygiène, BP 769 Agdal, 10090 Rabat, Morocco
- Département de Génétique Médicale, Institut National d’Hygiène, 7Avenue Ibn Batouta, B.P. 769, 11400 Rabat, Morocco
| | - Abdelali Zrhidri
- Centre de Recherche en Génomique des Pathologies Humaines (GENOPATH), Faculté de Médecine et de Pharmacie, Mohammed V University of Rabat, 10100 Rabat, Morocco
- Département de génétique médicale, Institut National d’Hygiène, BP 769 Agdal, 10090 Rabat, Morocco
| | - Siham Chafai Elaloui
- Centre de Recherche en Génomique des Pathologies Humaines (GENOPATH), Faculté de Médecine et de Pharmacie, Mohammed V University of Rabat, 10100 Rabat, Morocco
| | - Wiam Smaili
- Département de génétique médicale, Institut National d’Hygiène, BP 769 Agdal, 10090 Rabat, Morocco
| | - Jaber Lyahyai
- Centre de Recherche en Génomique des Pathologies Humaines (GENOPATH), Faculté de Médecine et de Pharmacie, Mohammed V University of Rabat, 10100 Rabat, Morocco
| | | | - Abdelaziz Sefiani
- Centre de Recherche en Génomique des Pathologies Humaines (GENOPATH), Faculté de Médecine et de Pharmacie, Mohammed V University of Rabat, 10100 Rabat, Morocco
- Département de génétique médicale, Institut National d’Hygiène, BP 769 Agdal, 10090 Rabat, Morocco
| |
Collapse
|
10
|
Steel D, Symonds JD, Zuberi SM, Brunklaus A. Dravet syndrome and its mimics: Beyond SCN1A. Epilepsia 2017; 58:1807-1816. [DOI: 10.1111/epi.13889] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Dora Steel
- The Paediatric Neurosciences Research Group; Royal Hospital for Children; Glasgow United Kingdom
| | - Joseph D. Symonds
- The Paediatric Neurosciences Research Group; Royal Hospital for Children; Glasgow United Kingdom
- School of Medicine; University of Glasgow; Glasgow United Kingdom
| | - Sameer M. Zuberi
- The Paediatric Neurosciences Research Group; Royal Hospital for Children; Glasgow United Kingdom
- School of Medicine; University of Glasgow; Glasgow United Kingdom
| | - Andreas Brunklaus
- The Paediatric Neurosciences Research Group; Royal Hospital for Children; Glasgow United Kingdom
- School of Medicine; University of Glasgow; Glasgow United Kingdom
| |
Collapse
|
11
|
Baysal-Kirac L, Serbest NG, Şahin E, Dede HÖ, Gürses C, Gökyiğit A, Bebek N, Bilge AK, Baykan B. Analysis of heart rate variability and risk factors for SUDEP in patients with drug-resistant epilepsy. Epilepsy Behav 2017; 71:60-64. [PMID: 28549245 DOI: 10.1016/j.yebeh.2017.04.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/08/2017] [Accepted: 04/08/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cardiac problems have been suggested as causes of sudden unexpected death in epilepsy (SUDEP). Our aim was to investigate possible associations of cardiac autonomic functions based on heart rate variability (HRV) parameters with risk factors of SUDEP in patients with drug-resistant epilepsy. METHODS Forty-seven patients with drug-resistant seizures and 45 healthy control subjects were enrolled in the study. Interictal time domain parameters of HRV were evaluated with 24-hour Holter recordings. Potential SUDEP risk in patients with epilepsy was estimated using an inventory of seven validated SUDEP risk factors (The SUDEP-7 inventory). RESULTS When compared with the healthy controls, all time domain measures (SDNN-24, SDNN-index, SDANN-index, RMSSD and pNN50) were significantly suppressed in the patient group. Scores of the SUDEP-7 inventory ranged from 1 to 9 with a median 4 out of a maximum possible risk score of 10. Maximum heart rate value in 24-hour Holter recordings and epilepsy duration were correlated with the SUDEP-7 scores (r=0.3, p=0.03). We found no significant association with HRV measures and SUDEP-7 risk factors. One patient diagnosed with Dravet syndrome died of SUDEP, which was autopsy confirmed; his SUDEP-7 inventory score was 7, HRV measures were significantly diminished, and his maximum heart rate (HR) was 208beats/min (maximum HR is between 104 and 188beats/min in normal subjects). CONCLUSION Patients with drug-resistant epilepsy present with significantly lower HRV measures, which may increase the risk for sudden cardiac death. Increased heart rate and diminished HRV measures may constitute one of the possible mechanisms underlying SUDEP and should be diagnosed in patients with epilepsy.
Collapse
Affiliation(s)
- Leyla Baysal-Kirac
- Istanbul University, Istanbul Faculty of Medicine, Department of Neurology and Clinical Neurophysiology, Fatih, 34093 Istanbul, Turkey.
| | - Nail Güven Serbest
- Istanbul University, Istanbul Faculty of Medicine, Department of Cardiology, Fatih, 34093 Istanbul, Turkey.
| | - Erdi Şahin
- Istanbul University, Istanbul Faculty of Medicine, Department of Neurology and Clinical Neurophysiology, Fatih, 34093 Istanbul, Turkey.
| | - Hava Özlem Dede
- Istanbul University, Istanbul Faculty of Medicine, Department of Neurology and Clinical Neurophysiology, Fatih, 34093 Istanbul, Turkey.
| | - Candan Gürses
- Istanbul University, Istanbul Faculty of Medicine, Department of Neurology and Clinical Neurophysiology, Fatih, 34093 Istanbul, Turkey.
| | - Ayşen Gökyiğit
- Istanbul University, Istanbul Faculty of Medicine, Department of Neurology and Clinical Neurophysiology, Fatih, 34093 Istanbul, Turkey.
| | - Nerses Bebek
- Istanbul University, Istanbul Faculty of Medicine, Department of Neurology and Clinical Neurophysiology, Fatih, 34093 Istanbul, Turkey.
| | - Ahmet Kaya Bilge
- Istanbul University, Istanbul Faculty of Medicine, Department of Cardiology, Fatih, 34093 Istanbul, Turkey.
| | - Betül Baykan
- Istanbul University, Istanbul Faculty of Medicine, Department of Neurology and Clinical Neurophysiology, Fatih, 34093 Istanbul, Turkey.
| |
Collapse
|