1
|
Ponisio MR, Zempel JM, Willie JT, Tomko SR, McEvoy SD, Roland JL, Williams JP. FDG-PET/MRI in the presurgical evaluation of pediatric epilepsy. Pediatr Radiol 2024; 54:1589-1602. [PMID: 39123082 DOI: 10.1007/s00247-024-06011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
In patients with drug-resistant epilepsy, difficulties in identifying the epileptogenic zone are well known to correlate with poorer clinical outcomes post-surgery. The integration of PET and MRI in the presurgical assessment of pediatric patients likely improves diagnostic precision by confirming or widening treatment targets. PET and MRI together offer superior insights compared to either modality alone. For instance, PET highlights abnormal glucose metabolism, while MRI precisely localizes structural anomalies, providing a comprehensive understanding of the epileptogenic zone. Furthermore, both methodologies, whether utilized through simultaneous PET/MRI scanning or the co-registration of separately acquired PET and MRI data, present unique advantages, having complementary roles in lesional and non-lesional cases. Simultaneous FDG-PET/MRI provides precise co-registration of functional (PET) and structural (MR) imaging in a convenient one-stop-shop approach, which minimizes sedation time and reduces radiation exposure in children. Commercially available fusion software that allows retrospective co-registration of separately acquired PET and MRI images is a commonly used alternative. This review provides an overview and illustrative cases that highlight the role of combining 18F-FDG-PET and MRI imaging and shares the authors' decade-long experience utilizing simultaneous PET/MRI in the presurgical evaluation of pediatric epilepsy.
Collapse
Affiliation(s)
- Maria R Ponisio
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, School of Medicine, Washington University in St Louis, MSC 8223-0019-10, 510 S. Kingshighway Blvd, St. Louis, MO, 63110, USA.
| | - John M Zempel
- Department of Neurology, School of Medicine, Washington University in St Louis, St. Louis, MO, USA
| | - Jon T Willie
- Department of Neurosurgery, School of Medicine, Washington University in St Louis, St. Louis, MO, USA
| | - Stuart R Tomko
- Department of Neurology, School of Medicine, Washington University in St Louis, St. Louis, MO, USA
| | - Sean D McEvoy
- Department of Neurosurgery, School of Medicine, Washington University in St Louis, St. Louis, MO, USA
| | - Jarod L Roland
- Department of Neurosurgery, School of Medicine, Washington University in St Louis, St. Louis, MO, USA
| | - Jonathan P Williams
- Department of Neurology, School of Medicine, Washington University in St Louis, St. Louis, MO, USA
| |
Collapse
|
2
|
Guo K, Hu J, Cui B, Wang Z, Hou Y, Yang H, Lu J. Simultaneous 18F-FDG PET/MRI predicting favourable surgical outcome in refractory epilepsy patients. Neuroradiology 2024:10.1007/s00234-024-03446-4. [PMID: 39172166 DOI: 10.1007/s00234-024-03446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVES To evaluate the (1) successful surgery proportion in patients with clear structural lesions on MRI and single abnormality on 18F-fluorodeoxyglucose positron emission tomography/Magnetic resonance imaging (18F-FDG PET/MRI); (2) predictive value of 18F-FDG PET/MRI for postsurgical outcome in refractory epilepsy patients. METHODS A retrospective study was conducted on 123 patients diagnosed with refractory epilepsy who underwent presurgical evaluation involving 18F-FDG PET/MRI and were followed for one-year post-surgery. Two neuroradiologists interpreted the PET/MRI images using visual analysis and an asymmetry index based on the standard uptake value. The Engel classification was used to assess surgical outcomes one-year post-surgery. Prognostic factors predicting post-surgical seizure outcomes were explored using univariate and binary logistic regression. RESULTS Definitely single lesion abnormality was observed in 35.0% (43/123) of the patients on the MRI portion of PET/MRI. The proportion increased to 74.0% (91/123) when 18 F-FDG PET portion was added. About 75% (69/91) of patients displaying a clear-cut lesion on 18 F-FDG PET/MRI were classified as Engel Class I one-year post-surgery. The proportion of Engel Class I patients was not significantly different when comparing MRI-single lesion patients with MRI-negative, PET-single lesion patients one year after surgery (81.4% vs. 70.0%, P = 0.24). Binary logistic regression analysis revealed that the detection of a clear single lesion on 18 F-FDG PET/MRI was a strong positive predictor of a favorable surgical outcome (OR 3.518, 95% CI 1.363-9.077, p = 0.009). CONCLUSION Single lesion detected on 18 F-FDG PET/MRI is useful to predict good surgical outcome for refractory epilepsy patients; Those patients should be considered as candidates for surgery.
Collapse
Affiliation(s)
- Kun Guo
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Hu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Bixiao Cui
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenming Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yaqin Hou
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hongwei Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China.
| |
Collapse
|
3
|
Murray NWG, Kneebone AC, Graham PL, Wong CH, Savage G, Gillinder L, Fong MWK. The network is more important than the node: stereo-EEG evidence of neurocognitive networks in epilepsy. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1424004. [PMID: 39114571 PMCID: PMC11303167 DOI: 10.3389/fnetp.2024.1424004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024]
Abstract
Introduction Neuropsychological assessment forms an integral part of the presurgical evaluation for patients with medically refractory focal epilepsy. Our understanding of cognitive impairment in epilepsy is based on seminal lesional studies that have demonstrated important structure-function relationships within the brain. However, a growing body of literature demonstrating heterogeneity in the cognitive profiles of patients with focal epilepsy (e.g., temporal lobe epilepsy; TLE) has led researchers to speculate that cognition may be impacted by regions outside the seizure onset zone, such as those involved in the interictal or "irritative" network. Methods Neuropsychological data from 48 patients who underwent stereoelectroencephalography (SEEG) monitoring between 2012 and 2023 were reviewed. Patients were categorized based on the site of seizure onset, as well as their irritative network, to determine the impact of wider network activity on cognition. Neuropsychological data were compared with normative standards (i.e., z = 0), and between groups. Results There were very few distinguishing cognitive features between patients when categorized based purely on the seizure onset zone (i.e., frontal lobe vs. temporal lobe epilepsy). In contrast, patients with localized irritative networks (i.e., frontal or temporal interictal epileptiform discharges [IEDs]) demonstrated more circumscribed profiles of impairment compared with those demonstrating wider irritative networks (i.e., frontotemporal IEDs). Furthermore, the directionality of propagation within the irritative network was found to influence the manifestations of cognitive impairment. Discussion The findings suggest that neuropsychological assessment is sensitive to network activity beyond the site of seizure onset. As such, an overly focal interpretation may not accurately reflect the distribution of the underlying pathology. This has important implications for presurgical work-up in epilepsy, as well as subsequent surgical outcomes.
Collapse
Affiliation(s)
- Nicholas W. G. Murray
- School of Psychological Sciences, Macquarie University, Sydney, Australia
- Westmead Comprehensive Epilepsy Centre, The University of Sydney, Sydney, Australia
| | - Anthony C. Kneebone
- School of Psychology, University of Queensland, Brisbane, Australia
- Department of Neurology and Stroke, Flinders Medical Centre, Adelaide, Australia
| | - Petra L. Graham
- School of Mathematical and Physical Sciences, Macquarie University, Sydney, Australia
| | - Chong H. Wong
- Westmead Comprehensive Epilepsy Centre, The University of Sydney, Sydney, Australia
| | - Greg Savage
- School of Psychological Sciences, Macquarie University, Sydney, Australia
| | - Lisa Gillinder
- Advanced Epilepsy Unit, The Mater Hospital, Brisbane, Australia
| | - Michael W. K. Fong
- Westmead Comprehensive Epilepsy Centre, The University of Sydney, Sydney, Australia
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
4
|
Kas A, Rozenblum L, Pyatigorskaya N. Clinical Value of Hybrid PET/MR Imaging: Brain Imaging Using PET/MR Imaging. Magn Reson Imaging Clin N Am 2023; 31:591-604. [PMID: 37741643 DOI: 10.1016/j.mric.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Hybrid PET/MR imaging offers a unique opportunity to acquire MR imaging and PET information during a single imaging session. PET/MR imaging has numerous advantages, including enhanced diagnostic accuracy, improved disease characterization, and better treatment planning and monitoring. It enables the immediate integration of anatomic, functional, and metabolic imaging information, allowing for personalized characterization and monitoring of neurologic diseases. This review presents recent advances in PET/MR imaging and highlights advantages in clinical practice for neuro-oncology, epilepsy, and neurodegenerative disorders. PET/MR imaging provides valuable information about brain tumor metabolism, perfusion, and anatomic features, aiding in accurate delineation, treatment response assessment, and prognostication.
Collapse
Affiliation(s)
- Aurélie Kas
- Department of Nuclear Medicine, Pitié-Salpêtrière Hospital, APHP Sorbonne Université, Paris, France; Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris F-75006, France.
| | - Laura Rozenblum
- Department of Nuclear Medicine, Pitié-Salpêtrière Hospital, APHP Sorbonne Université, Paris, France; Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris F-75006, France
| | - Nadya Pyatigorskaya
- Neuroradiology Department, Pitié-Salpêtrière Hospital, APHP Sorbonne Université, Paris, France; Sorbonne Université, UMR S 1127, CNRS UMR 722, Institut du Cerveau, Paris, France
| |
Collapse
|
5
|
Li H, Zhang M, Lin Z, Deng Z, Cao C, Zhan S, Liu W, Sun B. Utility of hybrid PET/MRI in stereoelectroencephalography guided radiofrequency thermocoagulation in MRI negative epilepsy patients. Front Neurosci 2023; 17:1163946. [PMID: 37378015 PMCID: PMC10291085 DOI: 10.3389/fnins.2023.1163946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) is a novel advanced non-invasive presurgical examination tool for patients with drug-resistant epilepsy (DRE). This study aims to evaluate the utility of PET/MRI in patients with DRE who undergo stereoelectroencephalography-guided radiofrequency thermocoagulation (SEEG-guided RFTC). Methods This retrospective study included 27 patients with DRE who underwent hybrid PET/MRI and SEEG-guided RFTC. Surgery outcome was assessed using a modified Engel classification, 2 years after RFTC. Potential areas of the seizure onset zone (SOZ) were identified on PET/MRI and confirmed by SEEG. Results Fifteen patients (55%) became seizure-free after SEEG-guided RFTC. Engel class II, III, and IV were achieved in six, two, and four patients, respectively at the 2 years follow-up. MRI was negative in 23 patients and structural abnormalities were found in four patients. Hybrid PET/MRI contributed to the identification of new structural or metabolic lesions in 22 patients. Concordant results between PET/MRI and SEEG were found in 19 patients in the identification of SOZ. Among the patients with multifocal onset, seizure-free status was achieved in 50% (6/12). Conclusion SEEG-guided RFTC is an effective and safe treatment for drug-resistant epilepsy. Hybrid PET/MRI serves as a useful tool for detecting the potential SOZs in MRI-negative patients and guide the implantation of SEEG electrodes. Patients with multifocal epilepsy may also benefit from this palliative treatment.
Collapse
Affiliation(s)
- Hongyang Li
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Miao Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyu Lin
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengdao Deng
- Research Group of Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
| | - Chunyan Cao
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shikun Zhan
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Liu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Guo J, Guo M, Liu R, Kong Y, Hu X, Yao L, Lv S, Lv J, Wang X, Kong QX. Seizure Outcome After Surgery for Refractory Epilepsy Diagnosed by 18F-fluorodeoxyglucose positron emission tomography ( 18F-FDG PET/MRI): A Systematic Review and Meta-Analysis. World Neurosurg 2023; 173:34-43. [PMID: 36746239 DOI: 10.1016/j.wneu.2023.01.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
OBJECTIVE When magnetic resonance imaging (MRI) fails to detect an underlying epileptogenic lesion, the odds of a good outcome after epilepsy surgery are significantly lower (20%-65% compared with 60%-90% if a lesion is detected). We investigated the possible effects of introducing hybrid 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET)/MRI into the decision algorithm for patients with lesioned and nonlesioned drug-resistant epilepsy. METHODS Three databases were searched from January 1990 to October 2022. We registered the protocol with International Platform of Registered Systematic Review and Meta-analysis Protocols. Studies in which 18F-FDG PET/MRI was conducted with ≥12 months of postsurgical follow-up in patients with refractory epilepsy. Random-effects meta-analysis was used to calculate the proportion of patients with good outcomes. Metaregression was used to investigate sources of heterogeneity. RESULTS We identified 8105 studies, of which 23 (1292 patients in total) were included. The overall good postoperative outcome rate was 71% (95% confidence interval 63.6-74.9). Good outcome was associated with the location of the refractory epileptic lesion (temporal lobe or extratemporal; risk ratio 1.27 [95% confidence interval 1.01-1.52], P = 0.009); Length of postoperative follow-up ≥40 months included in the same study accounted for 0.6% of the observed heterogeneity. CONCLUSIONS Seventy-one percent of patients with refractory epilepsy and 18F-FDG PET/MRI epileptogenic lesion features had a good outcome of epilepsy after surgery. Our findings can be incorporated into routine preoperative consultations and emphasize the importance of the complete resection of the temporal lobe epileptogenic zone for 18F-FDG PET/MRI detection when safe and feasible.
Collapse
Affiliation(s)
- Jia Guo
- Clinical Medical College, Jining Medical University, Jining, China
| | - Mujie Guo
- Department of Imaging, Affiliated Hospital of Jining Medical University, Jining, China
| | - Ruihan Liu
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining, China; Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Kong
- Department of Imaging, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xibin Hu
- Department of Imaging, Affiliated Hospital of Jining Medical University, Jining, China
| | - Lei Yao
- Clinical Medical College, Jining Medical University, Jining, China
| | - Shaomin Lv
- Clinical Medical College, Jining Medical University, Jining, China
| | - Jiahua Lv
- Clinical Medical College, Jining Medical University, Jining, China
| | - Xinyu Wang
- Clinical Medical College, Jining Medical University, Jining, China
| | - Qing-Xia Kong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China.
| |
Collapse
|
7
|
Sukprakun C, Tepmongkol S. Nuclear imaging for localization and surgical outcome prediction in epilepsy: A review of latest discoveries and future perspectives. Front Neurol 2022; 13:1083775. [PMID: 36588897 PMCID: PMC9800996 DOI: 10.3389/fneur.2022.1083775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Background Epilepsy is one of the most common neurological disorders. Approximately, one-third of patients with epilepsy have seizures refractory to antiepileptic drugs and further require surgical removal of the epileptogenic region. In the last decade, there have been many recent developments in radiopharmaceuticals, novel image analysis techniques, and new software for an epileptogenic zone (EZ) localization. Objectives Recently, we provided the latest discoveries, current challenges, and future perspectives in the field of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) in epilepsy. Methods We searched for relevant articles published in MEDLINE and CENTRAL from July 2012 to July 2022. A systematic literature review based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis was conducted using the keywords "Epilepsy" and "PET or SPECT." We included both prospective and retrospective studies. Studies with preclinical subjects or not focusing on EZ localization or surgical outcome prediction using recently developed PET radiopharmaceuticals, novel image analysis techniques, and new software were excluded from the review. The remaining 162 articles were reviewed. Results We first present recent findings and developments in PET radiopharmaceuticals. Second, we present novel image analysis techniques and new software in the last decade for EZ localization. Finally, we summarize the overall findings and discuss future perspectives in the field of PET and SPECT in epilepsy. Conclusion Combining new radiopharmaceutical development, new indications, new techniques, and software improves EZ localization and provides a better understanding of epilepsy. These have proven not to only predict prognosis but also to improve the outcome of epilepsy surgery.
Collapse
Affiliation(s)
- Chanan Sukprakun
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supatporn Tepmongkol
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,Chulalongkorn University Biomedical Imaging Group (CUBIG), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand,Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,*Correspondence: Supatporn Tepmongkol ✉
| |
Collapse
|
8
|
Shoeibi A, Moridian P, Khodatars M, Ghassemi N, Jafari M, Alizadehsani R, Kong Y, Gorriz JM, Ramírez J, Khosravi A, Nahavandi S, Acharya UR. An overview of deep learning techniques for epileptic seizures detection and prediction based on neuroimaging modalities: Methods, challenges, and future works. Comput Biol Med 2022; 149:106053. [DOI: 10.1016/j.compbiomed.2022.106053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 02/01/2023]
|
9
|
Cankurtaran CZ, Templer J, Bandt SK, Avery R, Hijaz T, McComb EN, Liu BP, Schuele S, Nemeth AJ, Korutz AW. Multimodal Presurgical Evaluation of Medically Refractory Focal Epilepsy in Adults: An Update for Radiologists. AJR Am J Roentgenol 2022; 219:488-500. [PMID: 35441531 DOI: 10.2214/ajr.22.27588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Surgery is a potentially curative treatment option for patients with medically refractory focal epilepsy. Advanced neuroimaging modalities often improve surgical outcomes by contributing key information during the highly individualized surgical planning process and intraoperative localization. Hence, neuroradiologists play an integral role in the multidisciplinary management team. In this review, we initially present the conceptual background and practical framework of the presurgical evaluation process, including a description of the surgical treatment approaches used for medically refractory focal epilepsy in adults. This background is followed by an overview of the advanced modalities commonly used during the presurgical workup at level IV epilepsy centers, including diffusion imaging techniques, blood oxygenation level-dependent functional MRI (fMRI), PET, SPECT, and subtraction ictal SPECT, and by introductions to 7-T MRI and electrophysiologic techniques including electroencephalography and magnetoencephalography. We also provide illustrative case examples of multimodal neuroimaging including PET/MRI, PET/MRI-diffusion-tensor imaging (DTI), subtraction ictal SPECT, and image-guided stereotactic planning with fMRI-DTI.
Collapse
Affiliation(s)
- Ceylan Z Cankurtaran
- Department of Radiology, Keck School of Medicine of USC, 1500 San Pablo St, HCC2 Radiology, Los Angeles, CA 90033
| | - Jessica Templer
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Sarah K Bandt
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Ryan Avery
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Tarek Hijaz
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Erin N McComb
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Benjamin P Liu
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Stephan Schuele
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Alexander J Nemeth
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Alexander W Korutz
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
10
|
PET/MRI in the Presurgical Evaluation of Patients with Epilepsy: A Concordance Analysis. Biomedicines 2022; 10:biomedicines10050949. [PMID: 35625684 PMCID: PMC9138772 DOI: 10.3390/biomedicines10050949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of our prospective study was to evaluate the clinical impact of hybrid [18F]-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging ([18F]-FDG PET/MRI) on the decision workflow of epileptic patients with discordant electroclinical and MRI data. A novel mathematical model was introduced for a clinical concordance calculation supporting the classification of our patients by subgroups of clinical decisions. Fifty-nine epileptic patients with discordant clinical and diagnostic results or MRI negativity were included in this study. The diagnostic value of the PET/MRI was compared to other modalities of presurgical evaluation (e.g., electroclinical data, PET, and MRI). The results of the population-level statistical analysis of the introduced data fusion technique and concordance analysis demonstrated that this model could be the basis for the development of a more accurate clinical decision support parameter in the future. Therefore, making the establishment of “invasive” (operable and implantable) and “not eligible for any further invasive procedures” groups could be much more exact. Our results confirmed the relevance of PET/MRI with the diagnostic algorithm of presurgical evaluation. The introduction of a concordance analysis could be of high importance in clinical and surgical decision-making in the management of epileptic patients. Our study corroborated previous findings regarding the advantages of hybrid PET/MRI technology over MRI and electroclinical data.
Collapse
|
11
|
Kumar A, Shandal V, Juhász C, Chugani HT. PET imaging in epilepsy. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
12
|
Frazzini V, Cousyn L, Navarro V. Semiology, EEG, and neuroimaging findings in temporal lobe epilepsies. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:489-518. [PMID: 35964989 DOI: 10.1016/b978-0-12-823493-8.00021-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Temporal lobe epilepsy (TLE) is the most common type of focal epilepsy. First descriptions of TLE date back in time and detailed portraits of epileptic seizures of temporal origin can be found in early medical reports as well as in the works of various artists and dramatists. Depending on the seizure onset zone, several subtypes of TLE have been identified, each one associated with peculiar ictal semiology. TLE can result from multiple etiological causes, ranging from genetic to lesional ones. While the diagnosis of TLE relies on detailed analysis of clinical as well as electroencephalographic (EEG) features, the lesions responsible for seizure generation can be highlighted by multiple brain imaging modalities or, in selected cases, by genetic investigations. TLE is the most common cause of refractory epilepsy and despite the great advances in diagnostic tools, no lesion is found in around one-third of patients. Surgical treatment is a safe and effective option, requiring presurgical investigations to accurately identify the seizure onset zone (SOZ). In selected cases, presurgical investigations need intracerebral investigations (such as stereoelectroencephalography) or dedicated metabolic imaging techniques (interictal PET and ictal SPECT) to correctly identify the brain structures to be removed.
Collapse
Affiliation(s)
- Valerio Frazzini
- AP-HP, Department of Neurology and Department of Clinical Neurophysiology, Epilepsy and EEG Unit, Reference Center for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, Paris Brain Institute, Team "Dynamics of Neuronal Networks and Neuronal Excitability", Paris, France
| | - Louis Cousyn
- AP-HP, Department of Neurology and Department of Clinical Neurophysiology, Epilepsy and EEG Unit, Reference Center for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, Paris Brain Institute, Team "Dynamics of Neuronal Networks and Neuronal Excitability", Paris, France
| | - Vincent Navarro
- AP-HP, Department of Neurology and Department of Clinical Neurophysiology, Epilepsy and EEG Unit, Reference Center for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, Paris Brain Institute, Team "Dynamics of Neuronal Networks and Neuronal Excitability", Paris, France.
| |
Collapse
|
13
|
18F-FDG PET/MR in focal epilepsy: A new step for improving the detection of epileptogenic lesions. Epilepsy Res 2021; 178:106819. [PMID: 34847426 DOI: 10.1016/j.eplepsyres.2021.106819] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022]
Abstract
PURPOSE Hybrid PET/MR is a promising tool in focal drug-resistant epilepsy, however the additional value for the detection of epileptogenic lesions and surgical decision-making remains to be established. METHODS We retrospectively compared 18F-FDG PET/MR images with those obtained by a previous 18F-FDG PET co-registered with MRI (PET+MR) in 25 consecutive patients (16 females, 13-60 years) investigated for focal drug-resistant epilepsy. Visual analysis was performed by two readers blinded from imaging modalities, asked to assess the technical characteristics (co-registration, quality of images), the confidence in results, the location of PET abnormalities and the presence of a structural lesion on MRI. Clinical impact on surgical strategy and outcome was assessed independently. RESULTS The location of epileptic focus was temporal in 9 patients and extra-temporal in 16 others. MRI was initially considered negative in 21 patients. PET stand-alone demonstrated metabolic abnormalities in 19 cases (76%), and the co-registration with MRI allowed the detection of 4 additional structural lesions. Compared to PET+MR, the PET/MR sensitivity was increased by 13% and new structural lesions (mainly focal cortical dysplasias) were detected in 6 patients (24%). Change of surgical decision-making was substantial for 10 patients (40%), consisting in avoiding invasive monitoring in 6 patients and modifying the planning in 4 others. Seizure-free outcome (follow-up>1 year) was obtained in 12/14 patients who underwent a cortical resection. CONCLUSION Hybrid PET/MR may improve the detection of epileptogenic lesions, allowing to optimize the presurgical work-up and to increase the proportion of successful surgery even in the more complex cases.
Collapse
|
14
|
Guo K, Wang J, Cui B, Wang Y, Hou Y, Zhao G, Lu J. [ 18F]FDG PET/MRI and magnetoencephalography may improve presurgical localization of temporal lobe epilepsy. Eur Radiol 2021; 32:3024-3034. [PMID: 34651211 DOI: 10.1007/s00330-021-08336-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To evaluate the clinical value of the combination of [18F]FDG PET/MRI and magnetoencephalography (MEG) ([18F]FDG PET/MRI/MEG) in localizing the epileptogenic zone (EZ) in temporal lobe epilepsy (TLE) patients. METHODS Seventy-three patients with localization-related TLE who underwent [18F]FDG PET/MRI and MEG were enrolled retrospectively. PET/MRI images were interpreted by two radiologists; the focal hypometabolism on PET was identified using statistical parametric mapping (SPM). MEG spike sources were co-registered onto T1-weighted sequence and analyzed by Neuromag software. The clinical value of [18F]FDG PET/MRI, MEG, and PET/MRI/MEG in locating the EZ was assessed using cortical resection and surgical outcomes as criteria. The correlations between surgical outcomes and modalities concordant or non-concordant with cortical resection were analyzed. RESULTS For 46.6% (34/73) of patients, MRI showed definitely structural abnormality concordant with surgical resection. SPM results of [18F]FDG PET showed focal temporal lobe hypometabolism concordant with surgical resection in 67.1% (49/73) of patients, while the concordant cases increased to 82.2% (60/73) patients with simultaneous MRI co-registration. MEG was concordant with surgical resection in 71.2% (52/73) of patients. The lobar localization was defined in 94.5% (69/73) of patients by the [18F]FDG PET/MRI/MEG. The results of PET/MRI/MEG concordance with surgical resection were significantly higher than that of PET/MRI or MEG (χ2 = 13.948, p < 0.001; χ2 = 5.393, p = 0.020). The results of PET/MRI/MEG cortical resection concordance with surgical outcome were shown to be better than PET/MRI or MEG (χ2 = 6.695, p = 0.012; χ2 = 16.991, p < 0.0001). CONCLUSIONS Presurgical evaluation by [18F]FDG PET/MRI/MEG could improve the identification of the EZ in TLE and may further guide surgical decision-making. KEY POINTS • Lobar localization was defined in 94.5% of patients by the [18F]FDG PET/MRI/MEG. • The results of PET/MRI/MEG concordance with surgical resection were significantly higher than that of PET/MRI or MEG alone. • The results of PET/MRI/MEG cortical resection concordance with surgical outcome were shown to be better than that of PET/MRI or MEG alone.
Collapse
Affiliation(s)
- Kun Guo
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Jingjuan Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Bixiao Cui
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Yihe Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yaqin Hou
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, 100053, China. .,Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China.
| |
Collapse
|
15
|
Kure AJ, Savas H, Hijaz TA, Hussaini SF, Korutz AW. Advancements in Positron Emission Tomography/Magnetic Resonance Imaging and Applications to Diagnostic Challenges in Neuroradiology. Semin Ultrasound CT MR 2021; 42:434-451. [PMID: 34537113 DOI: 10.1053/j.sult.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Since the clinical adoption of magnetic resonance (MR) in medical imaging, MR has proven to be a workhorse in diagnostic neuroradiology, with the ability to provide superb anatomic detail as well as additional functional and physiologic data, depending on the techniques utilized. Positron emission tomography/computed tomography has also shown irreplaceable diagnostic value in certain disease processes of the central nervous system by providing molecular and metabolic information through the development of numerous disease-specific PET tracers, many of which can be utilized as a diagnostic technique in and of themselves or can provide a valuable adjunct to information derived from MR. Despite these advances, many challenges still remain in neuroradiology, particularly in malignancy, neurodegenerative disease, epilepsy, and cerebrovascular disease. Through improvements in attenuation correction, motion correction, and PET detectors, combining the 2 modalities of PET and MR through simultaneous imaging has proven feasible and allows for improved spatial and temporal resolution without compromising either of the 2 individual modalities. The complementary information offered by both technologies has provided increased diagnostic accuracy in both research and many clinical applications in neuroradiology.
Collapse
Affiliation(s)
- Andrew J Kure
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| | - Hatice Savas
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| | - Tarek A Hijaz
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| | - Syed F Hussaini
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| | - Alexander W Korutz
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| |
Collapse
|
16
|
Tóth M, Barsi P, Tóth Z, Borbély K, Lückl J, Emri M, Repa I, Janszky J, Dóczi T, Horváth Z, Halász P, Juhos V, Gyimesi C, Bóné B, Kuperczkó D, Horváth R, Nagy F, Kelemen A, Jordán Z, Újvári Á, Hagiwara K, Isnard J, Pál E, Fekésházy A, Fabó D, Vajda Z. The role of hybrid FDG-PET/MRI on decision-making in presurgical evaluation of drug-resistant epilepsy. BMC Neurol 2021; 21:363. [PMID: 34537017 PMCID: PMC8449490 DOI: 10.1186/s12883-021-02352-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
Background When MRI fails to detect a potentially epileptogenic lesion, the chance of a favorable outcome after epilepsy surgery becomes significantly lower (from 60 to 90% to 20–65%). Hybrid FDG-PET/MRI may provide additional information for identifying the epileptogenic zone. We aimed to investigate the possible effect of the introduction of hybrid FDG-PET/MRI into the algorithm of the decision-making in both lesional and non-lesional drug-resistant epileptic patients. Methods In a prospective study of patients suffering from drug-resistant focal epilepsy, 30 nonlesional and 30 lesional cases with discordant presurgical results were evaluated using hybrid FDG-PET/MRI. Results The hybrid imaging revealed morphological lesion in 18 patients and glucose hypometabolism in 29 patients within the nonlesional group. In the MRI positive group, 4 patients were found to be nonlesional, and in 9 patients at least one more epileptogenic lesion was discovered, while in another 17 cases the original lesion was confirmed by means of hybrid FDG-PET/MRI. As to the therapeutic decision-making, these results helped to indicate resective surgery instead of intracranial EEG (iEEG) monitoring in 2 cases, to avoid any further invasive diagnostic procedures in 7 patients, and to refer 21 patients for iEEG in the nonlesional group. Hybrid FDG-PET/MRI has also significantly changed the original therapeutic plans in the lesional group. Prior to the hybrid imaging, a resective surgery was considered in 3 patients, and iEEG was planned in 27 patients. However, 3 patients became eligible for resective surgery, 6 patients proved to be inoperable instead of iEEG, and 18 cases remained candidates for iEEG due to the hybrid FDG-PET/MRI. Two patients remained candidates for resective surgery and one patient became not eligible for any further invasive intervention. Conclusions The results of hybrid FDG-PET/MRI significantly altered the original plans in 19 of 60 cases. The introduction of hybrid FDG-PET/MRI into the presurgical evaluation process had a potential modifying effect on clinical decision-making. Trial registration Trial registry: Scientific Research Ethics Committee of the Medical Research Council of Hungary. Trial registration number: 008899/2016/OTIG. Date of registration: 08 February 2016.
Collapse
Affiliation(s)
- Márton Tóth
- Department of Neurology, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary.
| | - Péter Barsi
- Department of Medical Imaging, Semmelweis University, Balassa út 6, Budapest, H-1083, Hungary
| | - Zoltán Tóth
- Dr. József Baka Diagnostic, Radiation oncology, Research and Teaching Center, Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary.,MEDICOPUS Healthcare Provider and Public Nonprofit Ltd., Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary
| | - Katalin Borbély
- PET/CT Ambulance, National Institute of Oncology, Ráth György u.7-9, Budapest, H-1122, Hungary
| | - János Lückl
- Dr. József Baka Diagnostic, Radiation oncology, Research and Teaching Center, Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary
| | - Miklós Emri
- MEDICOPUS Healthcare Provider and Public Nonprofit Ltd., Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary.,Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Imre Repa
- Dr. József Baka Diagnostic, Radiation oncology, Research and Teaching Center, Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary
| | - József Janszky
- Department of Neurology, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary.,MTA-PTE Clinical Neuroscience MRI Research Group, Ifjúság u. 20, Pécs, H-7624, Hungary
| | - Tamás Dóczi
- MTA-PTE Clinical Neuroscience MRI Research Group, Ifjúság u. 20, Pécs, H-7624, Hungary.,Department of Neurosurgery, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Zsolt Horváth
- Department of Neurosurgery, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Péter Halász
- National Institute of Clinical Neurosciences, Amerikai út 57, Budapest, H-1145, Hungary
| | - Vera Juhos
- Epihope Non-Profit Kft, Szilágyi Erzsébet fasor 17-21, Budapest, 1026, Hungary
| | - Csilla Gyimesi
- Department of Neurology, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Beáta Bóné
- Department of Neurology, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Diána Kuperczkó
- Department of Neurology, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Réka Horváth
- Department of Neurology, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Ferenc Nagy
- Department of Neurology, Somogy County Moritz Kaposi Teaching Hospital, Sándor u. 40, Guba, H-7400, Hungary
| | - Anna Kelemen
- National Institute of Clinical Neurosciences, Amerikai út 57, Budapest, H-1145, Hungary
| | - Zsófia Jordán
- National Institute of Clinical Neurosciences, Amerikai út 57, Budapest, H-1145, Hungary
| | - Ákos Újvári
- National Institute of Clinical Neurosciences, Amerikai út 57, Budapest, H-1145, Hungary
| | - Koichi Hagiwara
- Epilepsy and Sleep Center, Fukuoka Sanno Hospital, 3-6-45, Momochihama, Sawara-ku, Fukuoka, 814-0001, Japan
| | - Jean Isnard
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Hospital for Neurology and Neurosurgery Pierre Wertheimer, 59 Boulevard Pinel, 69500, Lyon, France
| | - Endre Pál
- Department of Neurology, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Attila Fekésházy
- Dr. József Baka Diagnostic, Radiation oncology, Research and Teaching Center, Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary.,MEDICOPUS Healthcare Provider and Public Nonprofit Ltd., Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary
| | - Dániel Fabó
- National Institute of Clinical Neurosciences, Amerikai út 57, Budapest, H-1145, Hungary
| | - Zsolt Vajda
- Dr. József Baka Diagnostic, Radiation oncology, Research and Teaching Center, Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary.,Department of Neurosurgery, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| |
Collapse
|
17
|
Algahtany M, Abdrabou A, Elhaddad A, Alghamdi A. Advances in Brain Imaging Techniques for Patients With Intractable Epilepsy. Front Neurosci 2021; 15:699123. [PMID: 34421522 PMCID: PMC8377195 DOI: 10.3389/fnins.2021.699123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022] Open
Abstract
Intractable epilepsy, also known as drug resistance or refractory epilepsy, is a major problem affecting nearly one-third of epilepsy patients. Surgical intervention could be an option to treat these patients. Correct identification and localization of epileptogenic foci is a crucial preoperative step. Some of these patients, however, have no abnormality on routine magnetic resonance imaging (MRI) of the brain. Advanced imaging techniques, therefore, can be helpful to identify the area of concern. Moreover, a clear delineation of certain anatomical brain structures and their relation to the surgical lesion or the surgical approach is essential to avoid postoperative complications, and advanced imaging techniques can be very helpful. In this review, we discuss and highlight the use of advanced imaging techniques, particularly positron emission tomography (PET)–MRI, single-photon emission computed tomography, functional MRI, and diffusion tensor imaging–tractography for the preoperative assessment of epileptic patients.
Collapse
Affiliation(s)
- Mubarak Algahtany
- Division of Neurosurgery, Department of Surgery, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Abdrabou
- Department of Radiology, Ain Shams University, Cairo, Egypt
| | - Ahmed Elhaddad
- Department of Radiology, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
18
|
Assessment of localization accuracy and postsurgical prediction of simultaneous 18F-FDG PET/MRI in refractory epilepsy patients. Eur Radiol 2021; 31:6974-6982. [PMID: 33638688 DOI: 10.1007/s00330-021-07738-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/16/2020] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To evaluate the accuracies of simultaneous 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging ([18F]-FDG PET/MRI) in preoperative localization and the postsurgical prediction. METHODS This retrospective study was performed on ninety-eight patients diagnosed with refractory epilepsy whose presurgical evaluation included [18F]-FDG PET/MRI, with 1-year post-surgery follow-up between August 2016 and December 2018. PET/MRI images were interpreted by two radiologists and a nuclear medicine physician to localize the EOZ using standard visual analysis and asymmetry index based on standard uptake value (SUV). The localization accuracy and predictive performance of simultaneous 18F-FDG PET/MRI based on the surgial pathology and postsurgical outcome were evaluated. RESULTS A total of 41.8% (41/98) patients were found to have a definitely structural abnormality on the MR portion of PET/MRI; 93.9% (92/98) were shown hypometabolism on the PET portion of the hybrid PET/MRI. PET/MRI identified 18 cases with subtle structural abnormalities on MRI re-read. Six percent (6/98) of patients PET/MRI were negative. A total of 65.3% (64/98) patients showed seizure-free at 1-year follow-up after epilepsy surgery. The sensitivity, specificity, and accuracy of [18F]-FDG PET/MRI was 95.3%, 8.8%, and 65.3% for seizure onset localization based on surgical pathology and postsurgical outcome, respectively. Multivariate regression analysis indicated that concordant of EOZ localization between PET/MRI and surgical resection range, which was a good positive predictor of seizure freedom (Engel I) (OR = 14.741, 95% CI 3.934-55.033, p < 0.001). CONCLUSIONS [18F]-FDG PET/MRI used as two combined modalities providing additional sensitivity when detecting possible epileptic foci and will probably improve the surgical outcome. KEY POINTS • Sensitivity, specificity, and accuracy of [18F]-FDG PET/MRI were 95.3%, 8.8%, and 65.3% for seizure onset localization based on surgical pathology and postsurgical outcome, respectively. • Concordance of EOZ localization between PET/MRI and surgical resection range was a good positive predictor of seizure freedom; presurgical [18F]-FDG PET/MRI will probably improve the surgical outcome.
Collapse
|
19
|
Poirier SE, Kwan BYM, Jurkiewicz MT, Samargandy L, Iacobelli M, Steven DA, Lam Shin Cheung V, Moran G, Prato FS, Thompson RT, Burneo JG, Anazodo UC, Thiessen JD. An evaluation of the diagnostic equivalence of 18F-FDG-PET between hybrid PET/MRI and PET/CT in drug-resistant epilepsy: A pilot study. Epilepsy Res 2021; 172:106583. [PMID: 33636504 DOI: 10.1016/j.eplepsyres.2021.106583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Hybrid PET/MRI may improve detection of seizure-onset zone (SOZ) in drug-resistant epilepsy (DRE), however, concerns over PET bias from MRI-based attenuation correction (MRAC) have limited clinical adoption of PET/MRI. This study evaluated the diagnostic equivalency and potential clinical value of PET/MRI against PET/CT in DRE. MATERIALS AND METHODS MRI, FDG-PET and CT images (n = 18) were acquired using a hybrid PET/MRI and a CT scanner. To assess diagnostic equivalency, PET was reconstructed using MRAC (RESOLUTE) and CT-based attenuation correction (CTAC) to generate PET/MRI and PET/CT images, respectively. PET/MRI and PET/CT images were compared qualitatively through visual assessment and quantitatively through regional standardized uptake value (SUV) and z-score assessment. Diagnostic accuracy and sensitivity of PET/MRI and PET/CT for SOZ detection were calculated through comparison to reference standards (clinical hypothesis and histopathology, respectively). RESULTS Inter-reader agreement in visual assessment of PET/MRI and PET/CT images was 78 % and 81 %, respectively. PET/MRI and PET/CT were strongly correlated in mean SUV (r = 0.99, p < 0.001) and z-scores (r = 0.92, p < 0.001) across all brain regions. MRAC SUV bias was <5% in most brain regions except the inferior temporal gyrus, temporal pole, and cerebellum. Diagnostic accuracy and sensitivity were similar between PET/MRI and PET/CT (87 % vs. 85 % and 83 % vs. 83 %, respectively). CONCLUSION We demonstrate here that PET/MRI with optimal MRAC can yield similar diagnostic performance as PET/CT. Nevertheless, further exploration of the potential added value of PET/MRI is necessary before clinical adoption of PET/MRI for epilepsy imaging.
Collapse
Affiliation(s)
- Stefan E Poirier
- Lawson Imaging, Lawson Health Research Institute, London, ON, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Benjamin Y M Kwan
- Department of Diagnostic Radiology, Queen's University, Kingston, ON, Canada
| | - Michael T Jurkiewicz
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Lina Samargandy
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Maryssa Iacobelli
- Lawson Imaging, Lawson Health Research Institute, London, ON, Canada
| | - David A Steven
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Victor Lam Shin Cheung
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - Frank S Prato
- Lawson Imaging, Lawson Health Research Institute, London, ON, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - R Terry Thompson
- Lawson Imaging, Lawson Health Research Institute, London, ON, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jorge G Burneo
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Udunna C Anazodo
- Lawson Imaging, Lawson Health Research Institute, London, ON, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Research Centre for Studies in Aging, McGill University, Montréal, QC, Canada.
| | - Jonathan D Thiessen
- Lawson Imaging, Lawson Health Research Institute, London, ON, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
20
|
Abstract
OBJECTIVE. The purpose of this article is to summarize the role of molecular imaging of the brain by use of SPECT, FDG PET, and non-FDG PET radiotracers in epilepsy. CONCLUSION. Quantitative image analysis with PET and SPECT has increased the diagnostic utility of these modalities in localizing epileptogenic onset zones. A multi-modal platform approach integrating the functional imaging of PET and SPECT with the morphologic information from MRI in presurgical evaluation of epilepsy can greatly improve outcomes.
Collapse
|
21
|
Kaewchur T, Chamroonrat W, Thientunyakit T, Khiewvan B, Wongsurawat N, Chotipanich C, Chinvarun Y, Bunyaratavej K, Amnuaywattakorn S, Poon-Iad N, Sontrapornpol T, Pasawang P, Tepmongkol S. Thai National Guideline for Nuclear Medicine Investigations in Epilepsy. ASIA OCEANIA JOURNAL OF NUCLEAR MEDICINE & BIOLOGY 2021; 9:188-206. [PMID: 34250150 PMCID: PMC8255518 DOI: 10.22038/aojnmb.2021.54567.1379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/20/2021] [Accepted: 04/17/2021] [Indexed: 11/06/2022]
Abstract
Epilepsy is a disorder of the brain, which is characterized by recurrent epileptic seizures. These patients are generally treated with antiepileptic drugs. However, more than 30% of the patients become medically intractable and undergo a series of investigations to define candidates for epilepsy surgery. Nuclear Medicine studies using Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) radiopharmaceuticals are among the investigations used for this purpose. Since available guidelines for the investigation of surgical candidates are not up-to-date, The Nuclear Medicine Society of Thailand, The Neurological Society of Thailand, The Royal College of Neurological Surgeons of Thailand, and The Thai Medical Physicist Society has collaborated to develop this Thai national guideline for Nuclear Medicine study in epilepsy. The guideline focuses on the use of brain perfusion SPECT and F-18 fluorodeoxyglucose PET (FDG-PET), the mainly used methods in day-to-day practice. This guideline aims for effective use of Nuclear Medicine investigations by referring physicians e.g. epileptologists and neurologists, radiologists, nuclear medicine physicians, medical physicists, nuclear medicine technologists and technicians.
Collapse
Affiliation(s)
- Tawika Kaewchur
- Department of Radiology, PET/CT and Cyclotron Center, Chiang Mai University, Chiang Mai, Thailand
| | - Wichana Chamroonrat
- Division of Nuclear Medicine, Department of Radiology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Tanyaluck Thientunyakit
- Division of Nuclear Medicine, Department of Radiology, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Benjapa Khiewvan
- Division of Nuclear Medicine, Department of Radiology, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nantaporn Wongsurawat
- Division of Nuclear Medicine, Department of Radiology, Khon Kaen University, Khon Kaen, Thailand
| | | | - Yotin Chinvarun
- Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | | | - Sasithorn Amnuaywattakorn
- Division of Nuclear Medicine, Department of Radiology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nucharee Poon-Iad
- Division of Nuclear Medicine, Department of Radiology, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tanawat Sontrapornpol
- Division of Nuclear Medicine, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Panya Pasawang
- Division of Nuclear Medicine, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Supatporn Tepmongkol
- Nuclear Medicine Division, Department of Radiology, Chulalongkorn University, Rama IV Rd, Pathumwan, Bangkok, Thailand
| |
Collapse
|
22
|
Aboian M, Barajas R, Shatalov J, Ravanfar V, Bahroos E, Tong E, Taylor JW, Bush NO, Sneed P, Seo Y, Cha S, Hernandez-Pampaloni M. Maximizing the use of batch production of 18F-FDOPA for imaging of brain tumors to increase availability of hybrid PET/MR imaging in clinical setting. Neurooncol Pract 2020; 8:91-97. [PMID: 33664973 DOI: 10.1093/nop/npaa065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Amino acid PET imaging of brain tumors has been shown to play an important role in predicting tumor grade, delineation of tumor margins, and differentiating tumor recurrence from the background of postradiation changes, but is not commonly used in clinical practice because of high cost. We propose that PET/MRI imaging of patients grouped to the day of tracer radiosynthesis will significantly decrease the cost of PET imaging, which will improve patient access to PET. Methods Seventeen patients with either primary brain tumors or metastatic brain tumors were recruited for imaging on 3T PET/MRI and were scanned on 4 separate days in groups of 3 to 5 patients. The first group of consecutively imaged patients contained 3 patients, followed by 2 groups of 5 patients, and a last group of 4 patients. Results For each of the patients, standard of care gadolinium-enhanced MRI and dynamic PET imaging with 18F-FDOPA amino acid tracer was obtained. The total cost savings of scanning 17 patients in batches of 4 as opposed to individual radiosynthesis was 48.5% ($28 321). Semiquantitative analysis of tracer uptake in normal brain were performed with appropriate accumulation and expected subsequent washout. Conclusion Amino acid PET tracers have been shown to play a critical role in the characterization of brain tumors but their adaptation to clinical practice has been limited because of the high cost of PET. Scheduling patient imaging to maximally use the radiosynthesis of imaging tracer significantly reduces the cost of PET and results in increased availability of PET tracer use in neuro-oncology.
Collapse
Affiliation(s)
- Mariam Aboian
- Department of Radiology, Yale University School of Medicine, New Haven, CT
| | - Ramon Barajas
- Department of Radiology, Oregon Health Sciences University
| | - Julia Shatalov
- Department of Radiology, Yale University School of Medicine, New Haven, CT
| | - Vahid Ravanfar
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Emma Bahroos
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Elizabeth Tong
- Department of Radiology, Stanford University, Palo Alto, California
| | - Jennie W Taylor
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California.,Department of Neurology, University of California San Francisco, San Francisco, California
| | - N Oberheim Bush
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Patricia Sneed
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Miguel Hernandez-Pampaloni
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| |
Collapse
|
23
|
Applications of Hybrid PET/Magnetic Resonance Imaging in Central Nervous System Disorders. PET Clin 2020; 15:497-508. [DOI: 10.1016/j.cpet.2020.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
24
|
Hancin EC, Borja AJ, Nikpanah M, Raynor WY, Haldar D, Werner TJ, Morris MA, Saboury B, Alavi A, Gholamrezanezhad A. PET/MR Imaging in Musculoskeletal Precision Imaging - Third wave after X-Ray and MR. PET Clin 2020; 15:521-534. [DOI: 10.1016/j.cpet.2020.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Zhang M, Liu W, Huang P, Lin X, Huang X, Meng H, Wang J, Hu K, Li J, Lin M, Sun B, Zhan S, Li B. Utility of hybrid PET/MRI multiparametric imaging in navigating SEEG placement in refractory epilepsy. Seizure 2020; 81:295-303. [PMID: 32932134 DOI: 10.1016/j.seizure.2020.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/09/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Stereo-electroencephalography (SEEG) implantation before epilepsy surgery is critical for precise localization and complete resection of the seizure onset zone (SOZ). Combined metabolic and morphological imaging using hybrid PET/MRI may provide supportive information for the optimization of the SEEG coverage of brain structures. In this study, we originally imported PET/MRI images into the SEEG positioning system to evaluate the application of PET/MRI in guiding SEEG implantation in refractory epilepsy patients. MATERIALS Forty-two patients undergoing simultaneous PET/MRI examinations were recruited. All the patients underwent SEEG implantation guided by hybrid PET/MRI and surgical resection or ablation of epileptic lesion. Surgery outcome was assessed using a modified Engel classification one year (13.60 ± 2.49 months) after surgery. Areas of SOZ were identified using hybrid PET/MRI and concordance with SEEG was evaluated. Logistic regression analysis was used to predict the presence of a favorable outcome with the coherence of concordance of PET/MRI and SEEG. RESULTS Hybrid PET/MRI (including visual PET, MRI, plus MI Neuro) identified SOZ lesions in 38 epilepsy patients (90.47 %). PET/MRI showed the same SOZ localization with SEEG in 29 patients (69.05 %), which was considered to be concordant. The concordance between the PET/MRI and SEEG findings was significantly predictive of a successful surgery outcome (odds ratio = 20.41; 95 % CI = 2.75-151.4, P = 0.003**). CONCLUSION Hybrid PET/MRI combined visual PET, multiple sequences MRI and SPM PET helps identify epilepsy lesions particularly in subtle hypometabolic areas. Patients with concordant epileptic lesion localization on PET/MRI and SEEG demonstrated a more favorable outcome than those with inconsistent localization between modalities.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Liu
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Peng Huang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaozhu Lin
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinyun Huang
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongping Meng
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jin Wang
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kejia Hu
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Li
- Clinical Research Center, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mu Lin
- MR Collaborations, Siemens Healthcare Ltd., Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shikun Zhan
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Biao Li
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Hybrid PET- MRI is a technique that has the ability to improve diagnostic accuracy in many applications, whereas PET and MRI performed separately often fail to provide accurate responses to clinical questions. Here, we review recent studies and current developments in PET-MRI, focusing on clinical applications. RECENT FINDINGS The combination of PET and MRI imaging methods aims at increasing the potential of each individual modality. Combined methods of image reconstruction and correction of PET-MRI attenuation are being developed, and a number of applications are being introduced into clinical practice. To date, the value of PET-MRI has been demonstrated for the evaluation of brain tumours in epilepsy and neurodegenerative diseases. Continued advances in data analysis regularly improve the efficiency and the potential application of multimodal biomarkers. SUMMARY PET-MRI provides simultaneous of anatomical, functional, biochemical and metabolic information for the personalized characterization and monitoring of neurological diseases. In this review, we show the advantage of the complementarity of different biomarkers obtained using PET-MRI data. We also present the recent advances made in this hybrid imaging modality and its advantages in clinical practice compared with MRI and PET separately.
Collapse
|
27
|
Poirier SE, Kwan BYM, Jurkiewicz MT, Samargandy L, Steven DA, Suller-Marti A, Lam Shin Cheung V, Khan AR, Romsa J, Prato FS, Burneo JG, Thiessen JD, Anazodo UC. 18F-FDG PET-guided diffusion tractography reveals white matter abnormalities around the epileptic focus in medically refractory epilepsy: implications for epilepsy surgical evaluation. Eur J Hybrid Imaging 2020; 4:10. [PMID: 34191151 PMCID: PMC8218143 DOI: 10.1186/s41824-020-00079-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/12/2020] [Indexed: 02/28/2023] Open
Abstract
BACKGROUND Hybrid PET/MRI can non-invasively improve localization and delineation of the epileptic focus (EF) prior to surgical resection in medically refractory epilepsy (MRE), especially when MRI is negative or equivocal. In this study, we developed a PET-guided diffusion tractography (PET/DTI) approach combining 18F-fluorodeoxyglucose PET (FDG-PET) and diffusion MRI to investigate white matter (WM) integrity in MRI-negative MRE patients and its potential impact on epilepsy surgical planning. METHODS FDG-PET and diffusion MRI of 14 MRI-negative or equivocal MRE patients were used to retrospectively pilot the PET/DTI approach. We used asymmetry index (AI) mapping of FDG-PET to detect the EF as brain areas showing the largest decrease in FDG uptake between hemispheres. Seed-based WM fiber tracking was performed on DTI images with a seed location in WM 3 mm from the EF. Fiber tractography was repeated in the contralateral brain region (opposite to EF), which served as a control for this study. WM fibers were quantified by calculating the fiber count, mean fractional anisotropy (FA), mean fiber length, and mean cross-section of each fiber bundle. WM integrity was assessed through fiber visualization and by normalizing ipsilateral fiber measurements to contralateral fiber measurements. The added value of PET/DTI in clinical decision-making was evaluated by a senior neurologist. RESULTS In over 60% of the patient cohort, AI mapping findings were concordant with clinical reports on seizure-onset localization and lateralization. Mean FA, fiber count, and mean fiber length were decreased in 14/14 (100%), 13/14 (93%), and 12/14 (86%) patients, respectively. PET/DTI improved diagnostic confidence in 10/14 (71%) patients and indicated that surgical candidacy be reassessed in 3/6 (50%) patients who had not undergone surgery. CONCLUSIONS We demonstrate here the utility of AI mapping in detecting the EF based on brain regions showing decreased FDG-PET activity and, when coupled with DTI, could be a powerful tool for detecting EF and assessing WM integrity in MRI-negative epilepsy. PET/DTI could be used to further enhance clinical decision-making in epilepsy surgery.
Collapse
Affiliation(s)
- Stefan E Poirier
- Lawson Imaging, Lawson Health Research Institute, 268 Grosvenor St., London, Ontario, N6A 4 V2, Canada. .,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| | - Benjamin Y M Kwan
- Department of Diagnostic Radiology, Queen's University, Kingston, Ontario, Canada
| | - Michael T Jurkiewicz
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lina Samargandy
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - David A Steven
- Epilepsy Program, Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ana Suller-Marti
- Epilepsy Program, Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | | - Ali R Khan
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Jonathan Romsa
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Frank S Prato
- Lawson Imaging, Lawson Health Research Institute, 268 Grosvenor St., London, Ontario, N6A 4 V2, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jorge G Burneo
- Epilepsy Program, Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jonathan D Thiessen
- Lawson Imaging, Lawson Health Research Institute, 268 Grosvenor St., London, Ontario, N6A 4 V2, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Udunna C Anazodo
- Lawson Imaging, Lawson Health Research Institute, 268 Grosvenor St., London, Ontario, N6A 4 V2, Canada. .,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
28
|
Saade-Lemus S, Nevo E, Soliman I, Otero HJ, Magee RW, Drum ET, States LJ. Clinical pediatric positron emission tomography/magnetic resonance program: a guide to successful implementation. Pediatr Radiol 2020; 50:607-617. [PMID: 32076750 DOI: 10.1007/s00247-019-04578-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/16/2019] [Accepted: 11/13/2019] [Indexed: 11/29/2022]
Abstract
Children with malignancies undergo recurrent imaging as part of tumor diagnosis, staging and therapy response assessment. Simultaneous positron emission tomography (PET) and magnetic resonance (MR) allows for decreased radiation exposure and acts as a one-stop shop for disease in which MR imaging is required. Nevertheless, PET/MR is still less readily available than PET/CT across institutions. This article serves as a guide to successful implementation of a clinical pediatric PET/MR program based on our extensive clinical experience. Challenges include making scanners more affordable and increasing patient throughput by decreasing total scan time. With improvements in workflow and robust acquisition protocols, PET/MR imaging is expected to play an increasingly important role in pediatric oncology.
Collapse
Affiliation(s)
- Sandra Saade-Lemus
- Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Elad Nevo
- Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Iman Soliman
- Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Hansel J Otero
- Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Ralph W Magee
- Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Elizabeth T Drum
- Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Lisa J States
- Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| |
Collapse
|
29
|
Johnson R, Rizk G, Kaur H, Ibekwe H, Atta M, Gayed I. Refractory seizures: Prediction of outcome of surgical intervention based on results from PET-CT, PET-MRI and electroencephaolography. Neuroradiol J 2019; 33:57-65. [PMID: 31637946 DOI: 10.1177/1971400919881464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PURPOSE The purpose of this article is to evaluate the effectiveness of fluorodeoxyglucose (FDG) positron emission tomography (PET)-computed tomography (CT) and PET-magnetic resonance imaging (MRI) with scalp and intracranial electroencephalogram (EEG) in predicting surgical outcomes in patients with refractory seizures. METHODS Patients who underwent PET-CT and MRI fusion, scalp and intracranial EEG, and subsequent surgical intervention were retrospectively included. PET-CT were fused with MRI and interpreted by an experienced blinded reader. An area of hypometabolism on PET was identified as the location of the epileptic focus. The site of seizure focus was correlated with scalp and intracranial EEG findings. Surgical outcomes were evaluated. Thirty-six patients were included; all had presurgical PET-CT, scalp EEG, and PET-MRI fusion, and 28 of these patients had intracranial EEGs. RESULTS PET-CT showed concordance of epileptic foci with scalp EEG in 7/36 patients (19%) and with intracranial EEG in 9/28 patients (32%). PET-MRI was concordant with scalp EEG in 6/36 patients (17%) and with intracranial EEG in 8/28 patients (29%). All patients with concordance of epileptic foci between PET-CT and PET-MRI and scalp EEG had improvement or resolution of seizures postintervention, and 89% of patients had concordance between intracranial EEG and PET studies. However, 45% of patients with discordant PET-CT and scalp EEG, 37% with discordance PET-CT and intracranial EEG, 43% with discordant PET-MRI and scalp EEG, and 35% of patients with discordant PET-MRI and intracranial EEG did not improve postsurgically. CONCLUSION Concordance of epileptic foci localization between PET imaging and EEG yields favorable postoperative outcome in nearly all patients, whereas discordance has an equal probability of favorable vs unfavorable outcomes.
Collapse
Affiliation(s)
- Rashad Johnson
- Nuclear Medicine Section, Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston, USA
| | - Grace Rizk
- Nuclear Medicine Section, Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston, USA
| | - Harleen Kaur
- Nuclear Medicine Section, Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston, USA
| | - Henry Ibekwe
- Nuclear Medicine Section, Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston, USA
| | - Monica Atta
- Nuclear Medicine Section, Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston, USA
| | - Isis Gayed
- Nuclear Medicine Section, Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston, USA
| |
Collapse
|