1
|
Jha SK, Nelson VK, Suryadevara PR, Panda SP, Pullaiah CP, Nuli MV, Kamal M, Imran M, Ausali S, Abomughaid MM, Srivastava R, Deka R, Pritam P, Gupta N, Shyam H, Singh IK, Pandey BW, Dewanjee S, Jha NK, Jafari SM. Cannabidiol and neurodegeneration: From molecular mechanisms to clinical benefits. Ageing Res Rev 2024; 100:102386. [PMID: 38969143 DOI: 10.1016/j.arr.2024.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024]
Abstract
Neurodegenerative disorders (NDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis are severe and life-threatening conditions in which significant damage of functional neurons occurs to produce psycho-motor malfunctions. NDs are an important cause of death in the elderly population worldwide. These disorders are commonly associated with the progression of age, oxidative stress, and environmental pollutants, which are the major etiological factors. Abnormal aggregation of specific proteins such as α-synuclein, amyloid-β, huntingtin, and tau, and accumulation of the associated oligomers in neurons are the hallmark pathological features of NDs. Existing therapeutic options for NDs are only symptomatic relief and do not address root-causing factors, such as protein aggregation, oxidative stress, and neuroinflammation. Cannabidiol (CBD) is a non-psychotic natural cannabinoid obtained from Cannabis sativa that possesses multiple pharmacological actions, including antioxidant, anti-inflammatory, and neuroprotective effects in various NDs and other neurological disorders both in vitro and in vivo. CBD has gained attention as a promising drug candidate for the management of neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, by inhibiting protein aggregation, free radicals, and neuroinflammation. In parallel, CBD has shown positive results in other neurological disorders, such as epilepsy, depression, schizophrenia, and anxiety, as well as adjuvant treatment with existing standard therapeutic agents. Hence, the present review focuses on exploring the possible molecular mechanisms in controlling various neurological disorders as well as the clinical applications of CBD in NDs including epilepsy, depression and anxiety. In this way, the current review will serve as a standalone reference for the researchers working in this area.
Collapse
Affiliation(s)
- Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Vinod Kumar Nelson
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute Of Medical And Technical Sciences, India
| | | | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Chitikela P Pullaiah
- Department of Chemistry, Siddha Central Research Institute, Central Council for Research in Siddha, Ministry of AYUSH, Govt. of India, Chennai, Tamil Nadu, India
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Saijyothi Ausali
- College of Pharmacy, MNR Higher Education and Research Academy Campus, MNR Nagar, Sangareddy 502294, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Rashi Srivastava
- Department of Chemical & Biochemical Engineering, Indian Institute of Technology,Patna, 800013 India
| | - Rahul Deka
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Pingal Pritam
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Neha Gupta
- School of Studies in Biotechnology, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Harishankar Shyam
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Indrakant K Singh
- Molecular Biology Research Lab., Department of Zoology, Deshbandhu College & Delhi School of Public Health, Institute of Eminence, University of Delhi, New Delhi 110019, India
| | | | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal 700 032, India
| | - Niraj Kumar Jha
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain
| |
Collapse
|
2
|
van der Veen S, Caviness JN, Dreissen YE, Ganos C, Ibrahim A, Koelman JH, Stefani A, Tijssen MA. Myoclonus and other jerky movement disorders. Clin Neurophysiol Pract 2022; 7:285-316. [PMID: 36324989 PMCID: PMC9619152 DOI: 10.1016/j.cnp.2022.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/29/2022] [Accepted: 09/11/2022] [Indexed: 11/27/2022] Open
Abstract
Myoclonus and other jerky movements form a large heterogeneous group of disorders. Clinical neurophysiology studies can have an important contribution to support diagnosis but also to gain insight in the pathophysiology of different kind of jerks. This review focuses on myoclonus, tics, startle disorders, restless legs syndrome, and periodic leg movements during sleep. Myoclonus is defined as brief, shock-like movements, and subtypes can be classified based the anatomical origin. Both the clinical phenotype and the neurophysiological tests support this classification: cortical, cortical-subcortical, subcortical/non-segmental, segmental, peripheral, and functional jerks. The most important techniques used are polymyography and the combination of electromyography-electroencephalography focused on jerk-locked back-averaging, cortico-muscular coherence, and the Bereitschaftspotential. Clinically, the differential diagnosis of myoclonus includes tics, and this diagnosis is mainly based on the history with premonitory urges and the ability to suppress the tic. Electrophysiological tests are mainly applied in a research setting and include the Bereitschaftspotential, local field potentials, transcranial magnetic stimulation, and pre-pulse inhibition. Jerks due to a startling stimulus form the group of startle syndromes. This group includes disorders with an exaggerated startle reflex, such as hyperekplexia and stiff person syndrome, but also neuropsychiatric and stimulus-induced disorders. For these disorders polymyography combined with a startling stimulus can be useful to determine the pattern of muscle activation and thus the diagnosis. Assessment of symptoms in restless legs syndrome and periodic leg movements during sleep can be performed with different validated scoring criteria with the help of electromyography.
Collapse
Affiliation(s)
- Sterre van der Veen
- Department of Neurology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands,Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
| | - John N. Caviness
- Department of Neurology, Mayo Clinic Arizona, Movement Neurophysiology Laboratory, Scottsdale, AZ, USA
| | - Yasmine E.M. Dreissen
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Christos Ganos
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Abubaker Ibrahim
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes H.T.M. Koelman
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Ambra Stefani
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Marina A.J. Tijssen
- Department of Neurology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands,Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands,Corresponding author at: Department of Neurology, University of Groningen, University Medical Centre Groningen (UMCG), PO Box 30.001, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
3
|
Bosak M, Sułek A, Łukasik M, Żak A, Słowik A, Lasek-Bal A. Genetic testing and the phenotype of Polish patients with Unverricht-Lundborg disease (EPM1) - A cohort study. Epilepsy Behav 2020; 112:107439. [PMID: 32920378 DOI: 10.1016/j.yebeh.2020.107439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 11/17/2022]
Abstract
AIM OF THE STUDY The aim of this study was to explore genetic findings and the phenotype in Polish patients with Unverricht-Lundborg disease (ULD). MATERIALS AND METHODS We retrospectively evaluated mutations in the cystatin B (CSTB) gene and clinical presentation in a cohort of patients with ULD. The study population consisted of 19 (14 males) patients with genetically confirmed disease. RESULTS Sixteen patients were homozygous for the expanded dodecamer repeat mutation alleles, one subject was compound heterozygous for the dodecamer repeat expansion and other mutation, in two, the type of mutation has not yet been established. The numbers of repeats in the CSTB gene varied from 60 to 81. Clinical information was available for 16 subjects. The disease course was progressive in all patients, leading to severe disability, mainly due to myoclonus, in nine. CONCLUSIONS AND CLINICAL IMPLICATIONS Genetic findings and the clinical picture of our patients with ULD were in accordance with available studies. The most common genetic defect underlying ULD was homozygosity for an unstable expansion of a dodecamer repeat in the CSTB gene. Patients with action or/and stimulus sensitive myoclonus or intractable myoclonus epilepsy, especially with onset in late childhood/adolescence should be screened for ULD.
Collapse
Affiliation(s)
- Magdalena Bosak
- Jagiellonian University Medical College, Faculty of Medicine, Department of Neurology, Jakubowskiego 2, 30-688 Kraków, Poland.
| | - Anna Sułek
- Department of Genetics, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warszawa, Poland
| | - Maria Łukasik
- Laboratory of Flow Cytometry and Vascular Biology, Department of Neurology, University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland
| | - Amadeusz Żak
- Department of Neurology, School of Health Sciences, Medical University of Silesia, Ziołowa 45/47, 40-635 Katowice, Poland
| | - Agnieszka Słowik
- Jagiellonian University Medical College, Faculty of Medicine, Department of Neurology, Jakubowskiego 2, 30-688 Kraków, Poland
| | - Anetta Lasek-Bal
- Department of Neurology, School of Health Sciences, Medical University of Silesia, Ziołowa 45/47, 40-635 Katowice, Poland
| |
Collapse
|
5
|
Oxidative Stress, a Crossroad Between Rare Diseases and Neurodegeneration. Antioxidants (Basel) 2020; 9:antiox9040313. [PMID: 32326494 PMCID: PMC7222183 DOI: 10.3390/antiox9040313] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is an imbalance between production and accumulation of oxygen reactive species and/or reactive nitrogen species in cells and tissues, and the capacity of detoxifying these products, using enzymatic and non-enzymatic components, such as glutathione. Oxidative stress plays roles in several pathological processes in the nervous system, such as neurotoxicity, neuroinflammation, ischemic stroke, and neurodegeneration. The concepts of oxidative stress and rare diseases were formulated in the eighties, and since then, the link between them has not stopped growing. The present review aims to expand knowledge in the pathological processes associated with oxidative stress underlying some groups of rare diseases: Friedreich’s ataxia, diseases with neurodegeneration with brain iron accumulation, Charcot-Marie-Tooth as an example of rare neuromuscular disorders, inherited retinal dystrophies, progressive myoclonus epilepsies, and pediatric drug-resistant epilepsies. Despite the discrimination between cause and effect may not be easy on many occasions, all these conditions are Mendelian rare diseases that share oxidative stress as a common factor, and this may represent a potential target for therapies.
Collapse
|