1
|
Antal DC, Altenmüller DM, Dümpelmann M, Scheiwe C, Reinacher PC, Crihan ET, Ignat BE, Cuciureanu ID, Demerath T, Urbach H, Schulze-Bonhage A, Heers M. Semiautomated electric source imaging determines epileptogenicity of encephaloceles in temporal lobe epilepsy. Epilepsia 2024; 65:651-663. [PMID: 38258618 DOI: 10.1111/epi.17879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
OBJECTIVE We aimed to assess the ability of semiautomated electric source imaging (ESI) from long-term video-electroencephalographic (EEG) monitoring (LTM) to determine the epileptogenicity of temporopolar encephaloceles (TEs) in patients with temporal lobe epilepsy. METHODS We conducted a retrospective study involving 32 temporal lobe epilepsy patients with TEs as potentially epileptogenic lesions in structural magnetic resonance imaging scans. Findings were validated through invasive intracerebral stereo-EEG in six of 32 patients and postsurgical outcome after tailored resection of the TE in 17 of 32 patients. LTM (mean duration = 6 days) was performed using the 10/20 system with additional T1/T2 for all patients and sphenoidal electrodes in 23 of 32 patients. Semiautomated detection and clustering of interictal epileptiform discharges (IEDs) were carried out to create IED types. ESI was performed on the averages of the two most frequent IED types per patient, utilizing individual head models, and two independent inverse methods (sLORETA [standardized low-resolution brain electromagnetic tomography], MUSIC [multiple signal classification]). ESI maxima concordance and propagation in spatial relation to TEs were quantified for sources with good signal quality (signal-to-noise ratio > 2, explained signal > 60%). RESULTS ESI maxima correctly colocalized with a TE in 20 of 32 patients (62.5%) either at the onset or half-rising flank of at least one IED type per patient. ESI maxima showed propagation from the temporal pole to other temporal or extratemporal regions in 14 of 32 patients (44%), confirming propagation originating in the area of the TE. The findings from both inverse methods validated each other in 14 of 20 patients (70%), and sphenoidal electrodes exhibited the highest signal amplitudes in 17 of 23 patients (74%). The concordance of ESI with the TE predicted a seizure-free postsurgical outcome (Engel I vs. >I) with a diagnostic odds ratio of 2.1. SIGNIFICANCE Semiautomated ESI from LTM often successfully identifies the epileptogenicity of TEs and the IED onset zone within the area of the TEs. Additionally, it shows potential predictive power for postsurgical outcomes in these patients.
Collapse
Affiliation(s)
- Dorin-Cristian Antal
- Faculty of Medicine, Epilepsy Center, Medical Center-University of Freiburg, Freiburg, Germany
- Neurology Clinic, Rehabilitation Clinical Hospital, Iași, Romania
- I Neurology Clinic, "Prof. Dr. N. Oblu" Emergency Clinical Hospital, Iasi, Romania
- University of Medicine and Pharmacy "Grigore T. Popa", Iasi, Romania
| | | | - Matthias Dümpelmann
- Faculty of Medicine, Epilepsy Center, Medical Center-University of Freiburg, Freiburg, Germany
| | - Christian Scheiwe
- Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Fraunhofer Institute for Laser Technology, Aachen, Germany
| | | | - Bogdan-Emilian Ignat
- Neurology Clinic, Rehabilitation Clinical Hospital, Iași, Romania
- University of Medicine and Pharmacy "Grigore T. Popa", Iasi, Romania
| | - Iulian-Dan Cuciureanu
- I Neurology Clinic, "Prof. Dr. N. Oblu" Emergency Clinical Hospital, Iasi, Romania
- University of Medicine and Pharmacy "Grigore T. Popa", Iasi, Romania
| | - Theo Demerath
- Department of Neuroradiology, University Hospital Freiburg, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, University Hospital Freiburg, Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Faculty of Medicine, Epilepsy Center, Medical Center-University of Freiburg, Freiburg, Germany
| | - Marcel Heers
- Faculty of Medicine, Epilepsy Center, Medical Center-University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Ojanen P, Kertész C, Morales E, Rai P, Annala K, Knight A, Peltola J. Automatic classification of hyperkinetic, tonic, and tonic-clonic seizures using unsupervised clustering of video signals. Front Neurol 2023; 14:1270482. [PMID: 38020607 PMCID: PMC10652877 DOI: 10.3389/fneur.2023.1270482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction This study evaluated the accuracy of motion signals extracted from video monitoring data to differentiate epileptic motor seizures in patients with drug-resistant epilepsy. 3D near-infrared video was recorded by the Nelli® seizure monitoring system (Tampere, Finland). Methods 10 patients with 130 seizures were included in the training dataset, and 17 different patients with 98 seizures formed the testing dataset. Only seizures with unequivocal hyperkinetic, tonic, and tonic-clonic semiology were included. Motion features from the catch22 feature collection extracted from video were explored to transform the patients' videos into numerical time series for clustering and visualization. Results Changes in feature generation provided incremental discrimination power to differentiate between hyperkinetic, tonic, and tonic-clonic seizures. Temporal motion features showed the best results in the unsupervised clustering analysis. Using these features, the system differentiated hyperkinetic, tonic and tonic-clonic seizures with 91, 88, and 45% accuracy after 100 cross-validation runs, respectively. F1-scores were 93, 90, and 37%, respectively. Overall accuracy and f1-score were 74%. Conclusion The selected features of motion distinguished semiological differences within epileptic seizure types, enabling seizure classification to distinct motor seizure types. Further studies are needed with a larger dataset and additional seizure types. These results indicate the potential of video-based hybrid seizure monitoring systems to facilitate seizure classification improving the algorithmic processing and thus streamlining the clinical workflow for human annotators in hybrid (algorithmic-human) seizure monitoring systems.
Collapse
Affiliation(s)
- Petri Ojanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Neuro Event Labs, Tampere, Finland
| | | | | | | | | | | | - Jukka Peltola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Neuro Event Labs, Tampere, Finland
- Department of Neurology, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
3
|
Reus EEM, Visser GH, Sommers-Spijkerman MPJ, van Dijk JG, Cox FME. Automated spike and seizure detection: Are we ready for implementation? Seizure 2023; 108:66-71. [PMID: 37088057 DOI: 10.1016/j.seizure.2023.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/25/2023] Open
Abstract
OBJECTIVE Automated detection of spikes and seizures has been a subject of research for several decades now. There have been important advances, yet automated detection in EMU (Epilepsy Monitoring Unit) settings has not been accepted as standard practice. We intend to implement this software at our EMU and so carried out a qualitative study to identify factors that hinder ('barriers') and facilitate ('enablers') implementation. METHOD Twenty-two semi-structured interviews were conducted with 14 technicians and neurologists involved in recording and reporting EEGs and eight neurologists who receive EEG reports in the outpatient department. The study was reported according to the Consolidated Criteria for Reporting Qualitative Studies (COREQ). RESULTS We identified 14 barriers and 14 enablers for future implementation. Most barriers were reported by technicians. The most prominent barrier was lack of trust in the software, especially regarding seizure detection and false positive results. Additionally, technicians feared losing their EEG review skills or their jobs. Most commonly reported enablers included potential efficiency in the EEG workflow, the opportunity for quantification of EEG findings and the willingness to try the software. CONCLUSIONS This study provides insight into the perspectives of users and offers recommendations for implementing automated spike and seizure detection in EMUs.
Collapse
Affiliation(s)
- E E M Reus
- Stichting Epilepsie Instellingen Nederland (SEIN).
| | - G H Visser
- Stichting Epilepsie Instellingen Nederland (SEIN)
| | - M P J Sommers-Spijkerman
- Department of Rehabilitation, Physical Therapy Science and Sports, University Medical Center Utrecht, the Netherlands
| | - J G van Dijk
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - F M E Cox
- Stichting Epilepsie Instellingen Nederland (SEIN)
| |
Collapse
|
4
|
Janmohamed M, Nhu D, Kuhlmann L, Gilligan A, Tan CW, Perucca P, O’Brien TJ, Kwan P. Moving the field forward: detection of epileptiform abnormalities on scalp electroencephalography using deep learning—clinical application perspectives. Brain Commun 2022; 4:fcac218. [PMID: 36092304 PMCID: PMC9453433 DOI: 10.1093/braincomms/fcac218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/25/2022] [Accepted: 08/25/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
The application of deep learning approaches for the detection of interictal epileptiform discharges is a nascent field, with most studies published in the past 5 years. Although many recent models have been published demonstrating promising results, deficiencies in descriptions of data sets, unstandardized methods, variation in performance evaluation and lack of demonstrable generalizability have made it difficult for these algorithms to be compared and progress to clinical validity. A few recent publications have provided a detailed breakdown of data sets and relevant performance metrics to exemplify the potential of deep learning in epileptiform discharge detection. This review provides an overview of the field and equips computer and data scientists with a synopsis of EEG data sets, background and epileptiform variation, model evaluation parameters and an awareness of the performance metrics of high impact and interest to the trained clinical and neuroscientist EEG end user. The gold standard and inter-rater disagreements in defining epileptiform abnormalities remain a challenge in the field, and a hierarchical proposal for epileptiform discharge labelling options is recommended. Standardized descriptions of data sets and reporting metrics are a priority. Source code-sharing and accessibility to public EEG data sets will increase the rigour, quality and progress in the field and allow validation and real-world clinical translation.
Collapse
Affiliation(s)
- Mubeen Janmohamed
- Department of Neuroscience, Central Clinical School, Monash University , Melbourne, VIC 3004 , Australia
- Department of Neurology, Alfred Health , Melbourne, VIC 3004 , Australia
- Department of Neurology, The Royal Melbourne Hospital , Melbourne, VIC 3050 , Australia
| | - Duong Nhu
- Department of Data Science and AI, Faculty of IT, Monash University , Clayton, VIC 3800 , Australia
| | - Levin Kuhlmann
- Department of Data Science and AI, Faculty of IT, Monash University , Clayton, VIC 3800 , Australia
| | - Amanda Gilligan
- Neurosciences Clinical Institute, Epworth Healthcare Hospital , Melbourne, VIC 3121 , Australia
| | - Chang Wei Tan
- Department of Data Science and AI, Faculty of IT, Monash University , Clayton, VIC 3800 , Australia
| | - Piero Perucca
- Department of Neuroscience, Central Clinical School, Monash University , Melbourne, VIC 3004 , Australia
- Department of Neurology, Alfred Health , Melbourne, VIC 3004 , Australia
- Department of Medicine, Austin Health, The University of Melbourne , Melbourne, VIC 3084 , Australia
- Comprehensive Epilepsy Program, Department of Neurology, Austin Health , Melbourne, VIC 3084 , Australia
| | - Terence J O’Brien
- Department of Neuroscience, Central Clinical School, Monash University , Melbourne, VIC 3004 , Australia
- Department of Neurology, Alfred Health , Melbourne, VIC 3004 , Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University , Melbourne, VIC 3004 , Australia
- Department of Neurology, Alfred Health , Melbourne, VIC 3004 , Australia
| |
Collapse
|
5
|
Automated seizure detection in an EMU setting: Are software packages ready for implementation? Seizure 2022; 96:13-17. [PMID: 35042003 DOI: 10.1016/j.seizure.2022.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022] Open
Abstract
PURPOSE We assessed whether automated detection software, combined with live observation, enabled reliable seizure detection using three commercial software packages: Persyst, Encevis and BESA. METHODS Two hundred and eighty-six prolonged EEG records of individuals aged 16-86 years, collected between August 2019 and January 2020, were retrospectively processed using all three packages. The reference standard included all seizures mentioned in the clinical report supplemented with true detections made by the software and not previously detected by clinical physiologists. Sensitivity was measured for offline review by clinical physiologists and software seizure detection, both in combination with live monitoring in an EMU setting, for all three software packages at record and seizure level. RESULTS The database contained 249 seizures in 64 records. The sensitivity of seizure detection was 98% for Encevis and Persyst, and 95% for BESA, when a positive results was defined as detection at least one of the seizures occurring within an individual record. When positivity was defined as recognition of all seizures, sensitivity was 93% for Persyst, 88% for Encevis and 84% for BESA. Clinical physiologists' review had a sensitivity of 100% at record level and 98% at seizure level. The median false positive rate per record was 1.7 for Persyst, 2.4 for BESA and 5.5 for Encevis per 24 h. CONCLUSION Automated seizure detection software does not perform as well as technicians do. However, it can be used in an EMU setting when the user is aware of its weaknesses. This assessment gives future users helpful insight into these strengths and weaknesses. The Persyst software performs best.
Collapse
|
6
|
Reus EEM, Cox FME, van Dijk JG, Visser GH. Automated spike detection: Which software package? Seizure 2021; 95:33-37. [PMID: 34974231 DOI: 10.1016/j.seizure.2021.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 10/19/2022] Open
Abstract
PURPOSE We assessed three commercial automated spike detection software packages (Persyst, Encevis and BESA) to see which had the best performance. METHODS Thirty prolonged EEG records from people aged at least 16 years were collected and 30-minute representative epochs were selected. Interictal epileptiform discharges (IEDs) were marked by three human experts and by all three software packages. For each 30-minutes selection and for each 10-second epoch we measured whether or not IEDs had occurred. We defined the gold standard as the combined detections of the experts. Kappa scores, sensitivity and specificity were estimated for each software package. RESULTS Sensitivity for Persyst in the default setting was 95% for 30-minute selections and 82% for 10-second epochs. Sensitivity for Encevis was 86% (30-minute selections) and 61% (10-second epochs). The specificity for both packages was 88% for 30-minute selections and 96%-99% for the 10-second epochs. Interrater agreement between Persyst and Encevis and the experts was similar than between experts (0.67-0.83 versus 0.63-0.67). Sensitivity for BESA was 40% and specificity 100%. Interrater agreement (0.25) was low. CONCLUSIONS IED detection by the Persyst automated software is better than the Encevis and BESA packages, and similar to human review, when reviewing 30-minute selections and 10-second epochs. This findings may help prospective users choose a software package.
Collapse
Affiliation(s)
- E E M Reus
- Department of Clinical Neurophysiology, Stichting Epilepsie Instellingen Nederland.
| | - F M E Cox
- Department of Clinical Neurophysiology, Stichting Epilepsie Instellingen Nederland
| | - J G van Dijk
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - G H Visser
- Department of Clinical Neurophysiology, Stichting Epilepsie Instellingen Nederland
| |
Collapse
|
7
|
Martinek R, Ladrova M, Sidikova M, Jaros R, Behbehani K, Kahankova R, Kawala-Sterniuk A. Advanced Bioelectrical Signal Processing Methods: Past, Present and Future Approach-Part II: Brain Signals. SENSORS (BASEL, SWITZERLAND) 2021; 21:6343. [PMID: 34640663 PMCID: PMC8512967 DOI: 10.3390/s21196343] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
As it was mentioned in the previous part of this work (Part I)-the advanced signal processing methods are one of the quickest and the most dynamically developing scientific areas of biomedical engineering with their increasing usage in current clinical practice. In this paper, which is a Part II work-various innovative methods for the analysis of brain bioelectrical signals were presented and compared. It also describes both classical and advanced approaches for noise contamination removal such as among the others digital adaptive and non-adaptive filtering, signal decomposition methods based on blind source separation, and wavelet transform.
Collapse
Affiliation(s)
- Radek Martinek
- Department of Cybernetics and Biomedical Engineering, VSB-Technical University Ostrava—FEECS, 708 00 Ostrava-Poruba, Czech Republic; (M.L.); (M.S.); (R.J.); (R.K.)
| | - Martina Ladrova
- Department of Cybernetics and Biomedical Engineering, VSB-Technical University Ostrava—FEECS, 708 00 Ostrava-Poruba, Czech Republic; (M.L.); (M.S.); (R.J.); (R.K.)
| | - Michaela Sidikova
- Department of Cybernetics and Biomedical Engineering, VSB-Technical University Ostrava—FEECS, 708 00 Ostrava-Poruba, Czech Republic; (M.L.); (M.S.); (R.J.); (R.K.)
| | - Rene Jaros
- Department of Cybernetics and Biomedical Engineering, VSB-Technical University Ostrava—FEECS, 708 00 Ostrava-Poruba, Czech Republic; (M.L.); (M.S.); (R.J.); (R.K.)
| | - Khosrow Behbehani
- College of Engineering, The University of Texas in Arlington, Arlington, TX 76019, USA;
| | - Radana Kahankova
- Department of Cybernetics and Biomedical Engineering, VSB-Technical University Ostrava—FEECS, 708 00 Ostrava-Poruba, Czech Republic; (M.L.); (M.S.); (R.J.); (R.K.)
| | - Aleksandra Kawala-Sterniuk
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, Poland
| |
Collapse
|