1
|
Khalil Y, Footitt E, Vootukuri R, Wempe MF, Coughlin CR, Batzios S, Wilson MP, Kožich V, Clayton PT, Mills PB. Assessment of urinary 6-oxo-pipecolic acid as a biomarker for ALDH7A1 deficiency. J Inherit Metab Dis 2024. [PMID: 39038845 DOI: 10.1002/jimd.12783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
ALDH7A1 deficiency is an epileptic encephalopathy whose seizures respond to treatment with supraphysiological doses of pyridoxine. It arises as a result of damaging variants in ALDH7A1, a gene in the lysine catabolism pathway. α-Aminoadipic semialdehyde (α-AASA) and Δ1-piperideine-6-carboxylate (P6C), which accumulate because of the block in the lysine pathway, are diagnostic biomarkers for this disorder. Recently, it has been reported that 6-oxo-pipecolic acid (6-oxo-PIP) also accumulates in the urine, CSF and plasma of ALDH7A1-deficient individuals and that, given its improved stability, it may be a more suitable biomarker for this disorder. This study measured 6-oxo-PIP in urine from a cohort of 30 patients where α-AASA was elevated and showed that it was above the normal range in all those above 6 months of age. However, 6-oxo-PIP levels were within the normal range in 33% of the patients below 6 months of age. Levels increased with age and correlated with a decrease in α-AASA levels. Longitudinal analysis of urine samples from ALDH7A1-deficient patients who were on a lysine restricted diet whilst receiving supraphysiological doses of pyridoxine showed that levels of 6-oxo-PIP remained elevated whilst α-AASA decreased. Similar to α-AASA, we found that elevated urinary excretion of 6-oxo-PIP can also occur in individuals with molybdenum cofactor deficiency. This study demonstrates that urinary 6-oxo-PIP may not be a suitable biomarker for ALDH7A1 deficiency in neonates. However, further studies are needed to understand the biochemistry leading to its accumulation and its potential long-term side effects.
Collapse
Affiliation(s)
- Youssef Khalil
- Genetics and Genomic Medicine, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Emma Footitt
- Department of Metabolic Paediatrics, Great Ormond Street Hospital, London, UK
| | - Reddy Vootukuri
- Genetics and Genomic Medicine, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Michael F Wempe
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Curtis R Coughlin
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Spyros Batzios
- Department of Metabolic Paediatrics, Great Ormond Street Hospital, London, UK
| | - Matthew P Wilson
- Genetics and Genomic Medicine, University College London Great Ormond Street Institute of Child Health, London, UK
- Laboratory for Molecular Diagnosis, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Peter T Clayton
- Genetics and Genomic Medicine, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Philippa B Mills
- Genetics and Genomic Medicine, University College London Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
2
|
Zagubnaya OA, Nartsissov YR. MOLECULAR MECHANISMS UNDERLYING THERAPEUTIC ACTION OF VITAMIN B6. PHARMACY & PHARMACOLOGY 2023. [DOI: 10.19163/2307-9266-2022-10-6-500-514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The aim of the study was to analyze the molecular mechanisms that determine the possibility of using vitamin B6 in clinical practice for the correction of various pathological conditions.Materials and methods. Information retrieval (Scopus, PubMed) and library (eLibrary) databases were used as research tools. In some cases, the ResearchGate application was used for a semantic search. The analysis and generalization of the scientific literature on the topic of research, covering the period from 1989 to the present, has been carried out in the work.Results. It has been shown that all chemical forms of vitamin B6 are able to penetrate the membranes of most cells by free diffusion, while forming phosphorylated forms inside. Pyridoxal phosphate is a biologically important metabolite that is directly involved as a cofactor in a variety of intracellular reactions. Requirements for this cofactor depend on the age, sex and condition of the patient. Pregnancy and lactation play a special role in the consumption of vitamin B6. In most cases, a balanced diet will provide an acceptable level of this vitamin. At the same time, its deficiency leads to the development of a number of pathological conditions, including neurodegenerative diseases, inflammations and diabetes. Negative manifestations from the central nervous system are also possible with an excessive consumption of B6.Conclusion. Replenishment of the vitamin B6 level in case of its identified deficiency is a necessary condition for the successful treatment of the central nervous system diseases, diabetes and correction of patients’ immune status. At the same time, it is necessary to observe a balanced intake of this cofactor in order to avoid negative effects on metabolism in case of its excess.
Collapse
Affiliation(s)
- O. A. Zagubnaya
- Institute of Cytochemistry and Molecular Pharmacology;
Biomedical Research Group, BiDiPharma GmbH
| | - Y. R. Nartsissov
- Institute of Cytochemistry and Molecular Pharmacology;
Biomedical Research Group, BiDiPharma GmbH
| |
Collapse
|
3
|
Jamali A, Kristensen E, Tangeraas T, Arntsen V, Sikiric A, Kupliauskiene G, Myren-Svelstad S, Berland S, Sejersted Y, Gerstner T, Hassel B, Bindoff LA, Brodtkorb E. The spectrum of pyridoxine dependent epilepsy across the age span: A nationwide retrospective observational study. Epilepsy Res 2023; 190:107099. [PMID: 36731270 DOI: 10.1016/j.eplepsyres.2023.107099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND Pyridoxine-dependent epilepsy (PDE) is a rare seizure disorder usually presenting with neonatal seizures. Most cases are caused by biallelic pathogenic ALDH7A1variants. While anti-seizure medications are ineffective, pyridoxine provides seizure control, and dietary interventions may be of benefit. As the natural history beyond adolescence is insufficiently explored, our study aimed to assess the spectrum of PDE at various ages in Norway. METHODS Patients were ascertained by contacting all Norwegian paediatric, neurological, and neurohabilitation departments and relevant professional societies. Medical records were collected and reviewed. RESULTS We identified 15 patients treated for PDE; 13 had ALDH7A1 variants (PDE-ALDH7A1), one had PNPO deficiency, and in one, aetiology remained obscure. Of those with PDE-ALDH7A1, 12 were alive at time of study; five were > 18 years old and six were < 4 years. Median age was 10 years (range 2 months-53 years). Estimated minimum prevalence was 6.3/million among children and 1.2/million among adults. Ten had seizure onset on the first day of life. Perinatal complications and neuroradiological abnormalities suggested additional seizure aetiologies in several patients. Pyridoxine had immediate effect in six, while six had delayed (>1 h) or uncertain effect. Median delay from first seizure to continuous treatment was 11 days (range 0-42). Nine experienced breakthrough seizures with intercurrent disease or due to pyridoxine discontinuation. Cognitive outcomes ranged from normal to severe intellectual disability. The condition appeared to remain stable in adult life. SIGNIFICANCE We found a much higher prevalence of PDE-ALDH7A1 in children relative to adults, suggesting previous underdiagnosis and early mortality. Perinatal complications are common and can delay diagnosis and initiation of pyridoxine treatment. Lifelong and continuous treatment with pyridoxine is imperative. Due to better diagnostics and survival, the number of adult patients is expected to rise.
Collapse
Affiliation(s)
- Ahmed Jamali
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olav University Hospital, Trondheim, Norway
| | - Erle Kristensen
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - Trine Tangeraas
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Vibeke Arntsen
- Department of Neurology and Clinical Neurophysiology, St. Olav University Hospital, Trondheim, Norway
| | - Alma Sikiric
- Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway
| | - Guste Kupliauskiene
- Department of Paediatric and Adolescent Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Sverre Myren-Svelstad
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olav University Hospital, Trondheim, Norway
| | - Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Yngve Sejersted
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Thorsten Gerstner
- Department of Child Neurology and Rehabilitation, Sørlandet Hospital, Arendal, Norway
| | - Bjørnar Hassel
- Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway; Department of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Laurence A Bindoff
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway; Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Eylert Brodtkorb
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olav University Hospital, Trondheim, Norway.
| |
Collapse
|
4
|
Global Metabolomics Discovers Two Novel Biomarkers in Pyridoxine-Dependent Epilepsy Caused by ALDH7A1 Deficiency. Int J Mol Sci 2022; 23:ijms232416061. [PMID: 36555701 PMCID: PMC9784804 DOI: 10.3390/ijms232416061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Pyridoxine-dependent epilepsy (PDE) is a rare autosomal recessive developmental and epileptic encephalopathy caused by pathogenic variants in the ALDH7A1 gene (PDE-ALDH7A1), which mainly has its onset in neonates and infants. Early diagnosis and treatment are crucial to prevent severe neurological sequelae or death. Sensitive, specific, and stable biomarkers for diagnostic evaluations and follow-up examinations are essential to optimize outcomes. However, most of the known biomarkers for PDE lack these criteria. Additionally, there is little discussion regarding the interdependence of biomarkers in the PDE-ALDH7A1 metabolite profile. Therefore, the aim of this study was to understand the underlying mechanisms in PDE-ALDH7A1 and to discover new biomarkers in the plasma of patients using global metabolomics. Plasma samples from 9 patients with genetically confirmed PDE-ALDH7A1 and 22 carefully selected control individuals were analyzed by ultra high performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS). Two novel and reliable pyridoxine-independent diagnostic markers, 6-hydroxy-2-aminocaproic acid (HACA) and an isomer of C9H11NO4, were identified. Furthermore, a possible reaction mechanism is proposed for HACA. This study demonstrates the capability of global metabolomics in disease screening to detect established and novel biomarkers.
Collapse
|
5
|
Pyridoxine-dependent epilepsy (PDE-ALDH7A1) in adulthood: A Dutch pilot study exploring clinical and patient-reported outcomes. Mol Genet Metab Rep 2022; 31:100853. [PMID: 35782612 PMCID: PMC9248223 DOI: 10.1016/j.ymgmr.2022.100853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/21/2022] Open
Abstract
Background Little is known about pyridoxine-dependent epilepsy due to α-aminoadipic semialdehyde dehydrogenase deficiency (PDE-ALDH7A1) in adulthood, as the genetic basis of the disorder has only been elucidated 15 years ago. This creates a knowledge gap for physicians, pediatric patients and their parents, which was aimed to address in this study using clinical data as well as patient-reported outcome measures (PROMs) for the patient's perspective. Methods Dutch, genetically confirmed PDE-ALDH7A1 patients ≥18 years were eligible for inclusion. Clinical data were collected as well as PROMs (PROMIS item banks Anxiety, Depression, Anger, Physical Functioning, Cognitive Functioning, Cognitive Abilities, Ability to Participate and Satisfaction with Social Roles). Results Ten out of 11 patients agreed to participate (91% response rate). Seizure control at last follow up (median age 25.2 years, range 17.8–29.8 years) was achieved with pyridoxine monotherapy in 70%, 20% with adjunct common-anti epileptic drugs and 10% did not obtain complete seizure control. Neurologic symptoms were present in all but one patient (90%) and included tremors, noted in 40%. Neuro-imaging abnormalities were present in 80%. Intellectual disability was present in 70%. One patient (10%) attended university, three maintained a job without assistance, five maintained a job with assistance or attended social daycare, and one patient never followed regular education. The cohort scored significantly lower on the PROMIS Cognitive Functioning compared to the general (age-related) population. Distribution of scores was wide on all PROMIS item banks. Discussion & conclusion Outcomes of this young adult cohort are heterogeneous and individualized approaches are therefore needed. Long-term seizure control with pyridoxine was achieved for almost all patients. Neurologic symptoms were noted in the majority, including tremors, as well as neuro-imaging abnormalities and intellectual disability, additionally reflected by the PROMIS Cognitive Functioning. PDE-ALDH7A1 patients scored comparable to the general population on all other PROMs, especially regarding Ability to Participate and Satisfaction with Social Roles this may indicate a positive interpretation of their functioning. The aim is to expand this pilot study to larger populations to obtain more solid data, and to advance the use of PROMs to engage patients in research and provide the opportunity for personalized care.
Collapse
|
6
|
Brister D, Werner BA, Gideon G, McCarty PJ, Lane A, Burrows BT, McLees S, Adelson PD, Arango JI, Marsh W, Flores A, Pankratz MT, Ly NH, Flood M, Brown D, Carpentieri D, Jin Y, Gu H, Frye RE. Central Nervous System Metabolism in Autism, Epilepsy and Developmental Delays: A Cerebrospinal Fluid Analysis. Metabolites 2022; 12:371. [PMID: 35629876 PMCID: PMC9148155 DOI: 10.3390/metabo12050371] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022] Open
Abstract
Neurodevelopmental disorders are associated with metabolic pathway imbalances; however, most metabolic measurements are made peripherally, leaving central metabolic disturbances under-investigated. Cerebrospinal fluid obtained intraoperatively from children with autism spectrum disorder (ASD, n = 34), developmental delays (DD, n = 20), and those without known DD/ASD (n = 34) was analyzed using large-scale targeted mass spectrometry. Eighteen also had epilepsy (EPI). Metabolites significantly related to ASD, DD and EPI were identified by linear models and entered into metabolite-metabolite network pathway analysis. Common disrupted pathways were analyzed for each group of interest. Central metabolites most involved in metabolic pathways were L-cysteine, adenine, and dodecanoic acid for ASD; nicotinamide adenine dinucleotide phosphate, L-aspartic acid, and glycine for EPI; and adenosine triphosphate, L-glutamine, ornithine, L-arginine, L-lysine, citrulline, and L-homoserine for DD. Amino acid and energy metabolism pathways were most disrupted in all disorders, but the source of the disruption was different for each disorder. Disruption in vitamin and one-carbon metabolism was associated with DD and EPI, lipid pathway disruption was associated with EPI and redox metabolism disruption was related to ASD. Two microbiome metabolites were also detected in the CSF: shikimic and cis-cis-muconic acid. Overall, this study provides increased insight into unique metabolic disruptions in distinct but overlapping neurodevelopmental disorders.
Collapse
Affiliation(s)
- Danielle Brister
- Barrett, The Honors College, Arizona State University, Tempe, AZ 85281, USA;
| | - Brianna A. Werner
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (B.A.W.); (P.J.M.); (A.L.); (S.M.); (M.F.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Geoffrey Gideon
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA;
| | - Patrick J. McCarty
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (B.A.W.); (P.J.M.); (A.L.); (S.M.); (M.F.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Alison Lane
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (B.A.W.); (P.J.M.); (A.L.); (S.M.); (M.F.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Brian T. Burrows
- Division of Neuroscience, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (B.T.B.); (P.D.A.); (J.I.A.); (N.H.L.); (D.B.)
| | - Sallie McLees
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (B.A.W.); (P.J.M.); (A.L.); (S.M.); (M.F.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - P. David Adelson
- Division of Neuroscience, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (B.T.B.); (P.D.A.); (J.I.A.); (N.H.L.); (D.B.)
| | - Jorge I. Arango
- Division of Neuroscience, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (B.T.B.); (P.D.A.); (J.I.A.); (N.H.L.); (D.B.)
| | | | - Angelea Flores
- Department of Pathology, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (A.F.); (M.T.P.); (D.C.)
| | - Matthew T. Pankratz
- Department of Pathology, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (A.F.); (M.T.P.); (D.C.)
| | - Ngoc Han Ly
- Division of Neuroscience, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (B.T.B.); (P.D.A.); (J.I.A.); (N.H.L.); (D.B.)
| | - Madison Flood
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (B.A.W.); (P.J.M.); (A.L.); (S.M.); (M.F.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Danni Brown
- Division of Neuroscience, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (B.T.B.); (P.D.A.); (J.I.A.); (N.H.L.); (D.B.)
| | - David Carpentieri
- Department of Pathology, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (A.F.); (M.T.P.); (D.C.)
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA; (Y.J.); (H.G.)
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA; (Y.J.); (H.G.)
| | - Richard E. Frye
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (B.A.W.); (P.J.M.); (A.L.); (S.M.); (M.F.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| |
Collapse
|