1
|
Agathangelidis A, Roussos A, Kardamiliotis K, Psomopoulos F, Stamatopoulos K. Stereotyped B-Cell Receptor Immunoglobulins in B-Cell Lymphomas. Methods Mol Biol 2025; 2865:125-143. [PMID: 39424723 DOI: 10.1007/978-1-0716-4188-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Thorough examination of clonotypic B-cell receptor immunoglobulin (BcR IG) gene rearrangement sequences in patients with mature B-cell malignancies has revealed significant repertoire restrictions, leading to the identification of subsets of patients expressing highly similar, stereotyped BcR IG. This discovery strongly suggests selection by common epitopes or classes of structurally similar epitopes in the development of these tumors. Initially observed in chronic lymphocytic leukemia (CLL), where the stereotyped fraction accounts for a substantial fraction of patients, stereotyped BcR IGs have also been identified in other mature B-cell malignancies, including mantle cell lymphoma (MCL) and splenic marginal zone lymphoma (SMZL).Further comparisons across different entities have indicated that stereotyped IGs are predominantly "disease-biased," indicating distinct immune pathogenetic trajectories. Notably, accumulating evidence suggests that molecular subclassification of mature B-cell malignancies based on BcR IG stereotypy holds biological and clinical relevance. Particularly in CLL, patients belonging to the same subset due to the expression of a specific stereotyped BcR IG exhibit consistent biological backgrounds and clinical courses, especially for major and extensively studied subsets. Therefore, robust assignment to stereotyped subsets may aid in uncovering mechanisms underlying disease initiation and progression, as well as refining patient risk stratification. In this chapter, we offer an overview of recent studies on BcR IG stereotypy in mature B-cell malignancies and delineate past and present methodological approaches utilized for the identification of stereotyped BcR IG.
Collapse
MESH Headings
- Humans
- Immunoglobulins/genetics
- Immunoglobulins/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/immunology
Collapse
Affiliation(s)
- Andreas Agathangelidis
- Division of Genetics & Biotechnology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Roussos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | | | - Fotis Psomopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece.
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
2
|
Rollenske T, Murugan R, Wardemann H, Busse CE. Expression Cloning of Antibodies from Single Human B Cells. Methods Mol Biol 2025; 2865:103-124. [PMID: 39424722 DOI: 10.1007/978-1-0716-4188-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The majority of lymphomas originate from B cells at the germinal center stage. Preferential selection of B-cell clones by a limited set of antigens has been suggested to drive lymphoma development. While recent studies in B-cell chronic lymphocytic leukemia (CLL) have shown that self-reactive B-cell receptors (BCR) can generate cell-autonomous signaling and proliferation, our knowledge about the role of BCRs for the development or survival of other lymphomas remains limited. Here, we describe a strategy to characterize the antibody reactivity of human B cells. The approach allows for unbiased characterization of the human antibody repertoire on single-cell level through the generation of recombinant monoclonal antibodies from primary human B cells of defined origin. This protocol offers a detailed description of the method starting from the flow cytometric isolation of single human B cells to the RT-PCR-based amplification of the expressed immunoglobulin (Ig) transcripts (IGH, IGK, and IGL) and their subsequent cloning into expression vectors for the in vitro production of recombinant monoclonal antibodies. The strategy may be used to obtain information about the clonal evolution of B-cell lymphomas by single-cell sequencing of Ig transcripts and on the antibody reactivity of human lymphoma B cells.
Collapse
Affiliation(s)
- Tim Rollenske
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Rheinische Friedrich Wilhelm University, Bonn, Germany
| | - Rajagopal Murugan
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Hedda Wardemann
- Division of B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian E Busse
- Division of B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
3
|
Liang Y, Chen X, Zhang X, Guo C, Zhang Y. Virus-driven dysregulation of the BCR pathway: a potential mechanism for the high prevalence of HIV related B-cell lymphoma. Ann Hematol 2024:10.1007/s00277-024-05959-7. [PMID: 39196379 DOI: 10.1007/s00277-024-05959-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
In people living with HIV (PLWH), the susceptibility to malignancies is notably augmented, with lymphoma emerging as a predominant malignancy. Even in the antiretroviral therapy (ART) era, aggressive B-cell lymphoma stands out as a paramount concern. Yet, the pathogenesis of HIV related lymphoma (HRL) largely remains an enigma. Recent insights underscore the pivotal role of the dysregulated B cell receptor (BCR) signaling cascade, evidencing its oncogenic potential across a spectrum of lymphomas. Intricate interplays between HIV and BCR structural-functional integrity have been identified in PLWH. In this review, we elucidated the mechanism by which the BCR signaling pathway is involved in HRL, mainly including the following aspects: HIV can reshape BCR structure by modulating of activation-induced cytidine deaminase (AID) and recombination-activating gene (RAG) dynamics; HIV can act as a chronic antigen to activate the BCR signaling pathway, such as upregulating PI3K and MAPK signaling pathway and reducing the expression of CD300a; HIV co-infection with other oncogenic viruses may also influence tumor formation mediated by the BCR signaling pathway. This review aims to elucidate the intricate regulation of the BCR signaling pathway by HIV in B cell lymphoma, providing a novel perspective on the pathogenesis of lymphoma in HIV-affected environments.
Collapse
Affiliation(s)
- Ying Liang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China
| | - Xue Chen
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China
| | - Xiuqun Zhang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Caiping Guo
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China.
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing100069, China.
| |
Collapse
|
4
|
López C, Silkenstedt E, Dreyling M, Beà S. Biological and clinical determinants shaping heterogeneity in mantle cell lymphoma. Blood Adv 2024; 8:3652-3664. [PMID: 38748869 PMCID: PMC11284685 DOI: 10.1182/bloodadvances.2023011763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/03/2024] [Indexed: 07/12/2024] Open
Abstract
ABSTRACT Mantle cell lymphoma (MCL) is an uncommon mature B-cell lymphoma that presents a clinical spectrum ranging from indolent to aggressive disease, with challenges in disease management and prognostication. MCL is characterized by significant genomic instability, affecting various cellular processes, including cell cycle regulation, cell survival, DNA damage response and telomere maintenance, NOTCH and NF-κB/ B-cell receptor pathways, and chromatin modification. Recent molecular and next-generation sequencing studies unveiled a broad genetic diversity among the 2 molecular subsets, conventional MCL (cMCL) and leukemic nonnodal MCL (nnMCL), which may partially explain their clinical heterogeneity. Some asymptomatic and genetically stable nnMCL not requiring treatment at diagnosis may eventually progress clinically. Overall, the high proliferation of tumor cells, blastoid morphology, TP53 and/or CDKN2A/B inactivation, and high genetic complexity influence treatment outcome in cases treated with standard regimens. Emerging targeted and immunotherapeutic strategies are promising for refractory or relapsed cases and a few genetic and nongenetic determinants of refractoriness have been reported. This review summarizes the recent advances in MCL biology, focusing on molecular insights, prognostic markers, and novel therapeutic approaches.
Collapse
Affiliation(s)
- Cristina López
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Departament de Fonaments Clínics, Universitat de Barcelona, Barcelona, Spain
| | - Elisabeth Silkenstedt
- Department of Medicine III, Ludwig-Maximilians-University Munich University Hospital, Munich, Germany
| | - Martin Dreyling
- Department of Medicine III, Ludwig-Maximilians-University Munich University Hospital, Munich, Germany
| | - Sílvia Beà
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Departament de Fonaments Clínics, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Gkoliou G, Agathangelidis A, Karakatsoulis G, Lalayanni C, Papalexandri A, Medina A, Genuardi E, Chlichlia K, Hatjiharissi E, Papaioannou M, Terpos E, Jimenez C, Sakellari I, Ferrero S, Ladetto M, Sanz RG, Belessi C, Stamatopoulos K. Differences in the immunoglobulin gene repertoires of IgG versus IgA multiple myeloma allude to distinct immunopathogenetic trajectories. Front Oncol 2023; 13:1123029. [PMID: 36845709 PMCID: PMC9945080 DOI: 10.3389/fonc.2023.1123029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
The analysis of the immunogenetic background of multiple myeloma (MM) has proven key to understanding disease ontogeny. However, limited information is available regarding the immunoglobulin (IG) gene repertoire in MM cases carrying different heavy chain isotypes. Here, we studied the IG gene repertoire in a series of 523 MM patients, of whom 165 and 358 belonged to the IgA and IgG MM groups, respectively. IGHV3 subgroup genes predominated in both groups. However, at the individual gene level, significant (p<0.05) differences were identified regarding IGHV3-21 (frequent in IgG MM) and IGHV5-51 (frequent in IgA MM). Moreover, biased pairings were identified between certain IGHV genes and IGHD genes in IgA versus IgG MM. Turning to the imprints of somatic hypermutation (SHM), the bulk of rearrangements (IgA: 90.9%, IgG: 87.4%) were heavily mutated [exhibiting an IGHV germline identity (GI) <95%]. SHM topology analysis disclosed distinct patterns in IgA MM versus IgG MM cases expressing B cell receptor IG encoded by the same IGHV gene: the most pronounced examples concerned the IGHV3-23, IGHV3-30 and IGHV3-9 genes. Furthermore, differential SHM targeting was also identified between IgA MM versus IgG MM, particularly in cases utilizing certain IGHV genes, alluding to functional selection. Altogether, our detailed immunogenetic evaluation in the largest to-date series of IgA and IgG MM patients reveals certain distinct features in the IGH gene repertoires and SHM. These findings suggest distinct immune trajectories for IgA versus IgG MM, further underlining the role of external drive in the natural history of MM.
Collapse
Affiliation(s)
- Glykeria Gkoliou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece,Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupoli, Greece
| | - Andreas Agathangelidis
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece,*Correspondence: Andreas Agathangelidis,
| | - Georgos Karakatsoulis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece,Department of Mathematics, School of Sciences, University of Ioannina, Ioannina, Greece
| | - Chrysavgi Lalayanni
- Hematology Department and HCT Unit, G. Papanikolaou Hospital, Thessaloniki, Greece
| | | | - Alejandro Medina
- Hematology Department, University Hospital of Salamanca, Salamanca, Spain
| | - Elisa Genuardi
- Department of Molecular Biotechnologies and Health Sciences, Hematology Division, University of Turin, Turin, Italy
| | - Katerina Chlichlia
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupoli, Greece
| | - Evdoxia Hatjiharissi
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Papaioannou
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Cristina Jimenez
- Hematology Department, University Hospital of Salamanca, Salamanca, Spain
| | - Ioanna Sakellari
- Hematology Department and HCT Unit, G. Papanikolaou Hospital, Thessaloniki, Greece
| | - Simone Ferrero
- Department of Molecular Biotechnologies and Health Sciences, Hematology Division, University of Turin, Turin, Italy
| | - Marco Ladetto
- Department of Molecular Biotechnologies and Health Sciences, Hematology Division, University of Turin, Turin, Italy
| | - Ramon Garcia Sanz
- Hematology Department, University Hospital of Salamanca, Salamanca, Spain
| | | | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece,Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
6
|
Medina A, Jiménez C, Sarasquete ME, González M, Chillón MC, Balanzategui A, Prieto-Conde I, García-Álvarez M, Puig N, González-Calle V, Alcoceba M, Cuenca I, Barrio S, Escalante F, Gutiérrez NC, Gironella M, Hernández MT, Sureda A, Oriol A, Bladé J, Lahuerta JJ, San Miguel JF, Mateos MV, Martínez-López J, Calasanz MJ, García-Sanz R. Molecular profiling of immunoglobulin heavy-chain gene rearrangements unveils new potential prognostic markers for multiple myeloma patients. Blood Cancer J 2020; 10:14. [PMID: 32029700 PMCID: PMC7004993 DOI: 10.1038/s41408-020-0283-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 01/09/2023] Open
Abstract
Multiple myeloma is a heterogeneous disease whose pathogenesis has not been completely elucidated. Although B-cell receptors play a crucial role in myeloma pathogenesis, the impact of clonal immunoglobulin heavy-chain features in the outcome has not been extensively explored. Here we present the characterization of complete heavy-chain gene rearrangements in 413 myeloma patients treated in Spanish trials, including 113 patients characterized by next-generation sequencing. Compared to the normal B-cell repertoire, gene selection was biased in myeloma, with significant overrepresentation of IGHV3, IGHD2 and IGHD3, as well as IGHJ4 gene groups. Hypermutation was high in our patients (median: 8.8%). Interestingly, regarding patients who are not candidates for transplantation, a high hypermutation rate (≥7%) and the use of IGHD2 and IGHD3 groups were associated with improved prognostic features and longer survival rates in the univariate analyses. Multivariate analysis revealed prolonged progression-free survival rates for patients using IGHD2/IGHD3 groups (HR: 0.552, 95% CI: 0.361-0.845, p = 0.006), as well as prolonged overall survival rates for patients with hypermutation ≥7% (HR: 0.291, 95% CI: 0.137-0.618, p = 0.001). Our results provide new insights into the molecular characterization of multiple myeloma, highlighting the need to evaluate some of these clonal rearrangement characteristics as new potential prognostic markers.
Collapse
Affiliation(s)
- Alejandro Medina
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - Cristina Jiménez
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - M Eugenia Sarasquete
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain.
| | - Marcos González
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - M Carmen Chillón
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - Ana Balanzategui
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - Isabel Prieto-Conde
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - María García-Álvarez
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - Noemí Puig
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - Verónica González-Calle
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - Miguel Alcoceba
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | | | | | | | - Norma C Gutiérrez
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | | | | | - Anna Sureda
- Hospital Duran i Reynals, Institut Català d'Oncología (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Albert Oriol
- Hospital Germans Trias i Pujol, Institut Català d'Oncología (ICO), Institut Josep Carreras, Badalona, Spain
| | - Joan Bladé
- Hospital Clínic i Provincial, Institut de Investicacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Jesús F San Miguel
- Clínica Universidad de Navarra (CUN), Centro de Investigación Médica Aplicada, IDISNA, CIBERONC, Pamplona, Spain
| | - María-Victoria Mateos
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | | | - María-José Calasanz
- Clínica Universidad de Navarra (CUN), Centro de Investigación Médica Aplicada, IDISNA, CIBERONC, Pamplona, Spain
| | - Ramón García-Sanz
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| |
Collapse
|
7
|
Gemenetzi K, Agathangelidis A, Zaragoza-Infante L, Sofou E, Papaioannou M, Chatzidimitriou A, Stamatopoulos K. B Cell Receptor Immunogenetics in B Cell Lymphomas: Immunoglobulin Genes as Key to Ontogeny and Clinical Decision Making. Front Oncol 2020; 10:67. [PMID: 32083012 PMCID: PMC7006488 DOI: 10.3389/fonc.2020.00067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/15/2020] [Indexed: 12/21/2022] Open
Abstract
The clonotypic B cell receptor immunoglobulin (BcR IG) plays a seminal role in B cell lymphoma development and evolution. From a clinical perspective, this view is supported by the remarkable therapeutic efficacy of BcR signaling inhibitors, even among heavily pre-treated, relapsed/refractory patients. This clinical development complements immunogenetic evidence for antigen drive in the natural history of these tumors. Indeed, BcR IG gene repertoire biases have been documented in different B cell lymphoma subtypes, alluding to selection of B cell progenitors that express particular BcR IG. Moreover, distinct entities display imprints of somatic hypermutation within the clonotypic BcR IG gene following patterns that strengthen the argument for antigen selection. Of note, at least in certain B cell lymphomas, the BcR IG genes are intraclonally diversified, likely in a context of ongoing interactions with antigen(s). Moreover, BcR IG gene repertoire profiling suggests that unique immune pathways lead to distinct B cell lymphomas through targeting cells at different stages in the B cell differentiation trajectory (e.g., germinal center B cells in follicular lymphoma, FL). Regarding the implicated antigens, although their precise nature remains to be fully elucidated, immunogenetic analysis has offered important hints by revealing similarities between the BcR IG of particular lymphomas and B cell clones with known antigenic specificity: this has paved the way to functional studies that identified relevant antigenic determinants of classes of structurally similar epitopes. Finally, in certain tumors, most notably chronic lymphocytic leukemia (CLL), immunogenetic analysis has also proven instrumental in accurate patient risk stratification since cases with differing BcR IG gene sequence features follow distinct disease courses and respond differently to particular treatment modalities. Overall, delving into the BcR IG gene sequences emerges as key to understanding B cell lymphoma pathophysiology, refining prognostication and assisting in making educated treatment choices.
Collapse
Affiliation(s)
- Katerina Gemenetzi
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Andreas Agathangelidis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Laura Zaragoza-Infante
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Electra Sofou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Maria Papaioannou
- Hematology Department, University General Hospital of Thessaloniki AHEPA, Thessaloniki, Greece
| | | | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| |
Collapse
|
8
|
Agathangelidis A, Psomopoulos F, Stamatopoulos K. Stereotyped B Cell Receptor Immunoglobulins in B Cell Lymphomas. Methods Mol Biol 2019; 1956:139-155. [PMID: 30779034 DOI: 10.1007/978-1-4939-9151-8_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Comprehensive analysis of the clonotypic B cell receptor immunoglobulin (BcR IG) gene rearrangement sequences in patients with mature B cell neoplasms has led to the identification of significant repertoire restrictions, culminating in the discovery of subsets of patients expressing highly similar, stereotyped BcR IG. This finding strongly supports selection by common epitopes or classes of structurally similar epitopes in the ontogeny of these tumors. BcR IG stereotypy was initially described in chronic lymphocytic leukemia (CLL), where the stereotyped fraction of the disease accounts for a remarkable one-third of patients. However, subsequent studies showed that stereotyped BcR IG are also present in other neoplasms of mature B cells, including mantle cell lymphoma (MCL) and splenic marginal zone lymphoma (SMZL). Subsequent cross-entity comparisons led to the conclusion that stereotyped IG are mostly "disease-specific," implicating distinct immunopathogenetic processes. Interestingly, mounting evidence suggests that a molecular subclassification of lymphomas based on BcR IG stereotypy is biologically and clinically relevant. Indeed, particularly in CLL, patients assigned to the same subset due to expressing a particular stereotyped BcR IG display remarkably consistent biological background and clinical course, at least for major and well-studied subsets. Thus, the robust assignment to stereotyped subsets may assist in the identification of mechanisms underlying disease onset and progression, while also refining risk stratification. In this book chapter, we provide an overview of the recent BcR IG stereotypy studies in mature B cell malignancies and outline previous and current methodological approaches used for the identification of stereotyped IG.
Collapse
Affiliation(s)
- Andreas Agathangelidis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Fotis Psomopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece.
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
Abstract
The majority of lymphomas originate from B cells at the germinal center stage. Preferential selection of B-cell clones by a limited set of antigens has been suggested to drive lymphoma development. While recent studies in chronic lymphocytic leukemia have shown that self-reactive B-cell receptors (BCR) can generate cell-autonomous signaling and proliferation, our knowledge about the role of BCRs for the development or survival of other lymphomas remains limited. Here, we describe a strategy to characterize the antibody reactivity of human B cells. The approach allows the unbiased characterization of the human antibody repertoire at single-cell level through the generation of recombinant monoclonal antibodies from single primary human B cells of defined origin. This protocol offers a detailed description of the method starting from the flow-cytometric isolation of single human B cells to the reverse transcription-polymerase chain reaction (RT-PCR)-based amplification of the expressed immunoglobulin (Ig) transcripts (IGH, IGK, and IGL) and their subsequent cloning into expression vectors for the in vitro production of recombinant monoclonal antibodies. The strategy may be used to obtain information on the clonal evolution of B-cell lymphomas by single-cell sequencing of Ig transcripts and on the antibody reactivity of human lymphoma B cells.
Collapse
Affiliation(s)
- Hedda Wardemann
- Division of B-Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Christian E Busse
- Division of B-Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
10
|
Numerous Ontogenetic Roads to Mantle Cell Lymphoma. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1454-1458. [DOI: 10.1016/j.ajpath.2017.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/24/2017] [Indexed: 11/17/2022]
|
11
|
Xochelli A, Sutton LA, Agathangelidis A, Stalika E, Karypidou M, Marantidou F, Lopez AN, Papadopoulos G, Supikova J, Groenen P, Boudjogra M, Sundstrom C, Ponzoni M, Francova HS, Anagnostopoulos A, Pospisilova S, Papadaki T, Tzovaras D, Ghia P, Pott C, Davi F, Campo E, Rosenquist R, Hadzidimitriou A, Belessi C, Stamatopoulos K. Molecular evidence for antigen drive in the natural history of mantle cell lymphoma. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1740-8. [PMID: 25843681 DOI: 10.1016/j.ajpath.2015.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/23/2015] [Accepted: 02/26/2015] [Indexed: 10/24/2022]
Abstract
To further our understanding about antigen involvement in mantle cell lymphoma (MCL), we analyzed the expression levels of activation-induced cytidine deaminase (AID), a key player in B-cell responses to antigen triggering, in 133 MCL cases; assessed the functionality of AID by evaluating in vivo class switch recombination in 52 MCL cases; and sought for indications of ongoing antigen interactions by exploring intraclonal diversification within 14 MCL cases. The AID full-length transcript and the most frequent splice variants (AID-ΔE4a, AID-ΔE) were detected in 128 (96.2%), 96 (72.2%), and 130 cases (97.7%), respectively. Higher AID full-length transcript levels were significantly associated (P < 0.001) with lack of somatic hypermutation within the clonotypic immunoglobulin heavy variable (IGHV) genes. Median AID transcript levels were higher in lymph node material compared to cases in which peripheral blood was analyzed, implying that clonal behavior is influenced by the microenvironment. Switched tumor-derived IGHV-IGHD-IGHJ transcripts were identified in 5 of 52 cases (9.6%), all of which displayed somatic hypermutation and AID-mRNA expression. Finally, although most cases exhibited low levels of intraclonal diversification, analysis of the mutational activity revealed a precise targeting of somatic hypermutation indicative of an active, ongoing interaction with antigen(s). Collectively, these findings strongly allude to antigen involvement in the natural history of MCL, further challenging the notion of antigen naivety.
Collapse
Affiliation(s)
- Aliki Xochelli
- Institute of Applied Biosciences, CERTH, Center for Research and Technology Hellas, Thessaloniki, Greece; Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece; Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lesley-Ann Sutton
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Andreas Agathangelidis
- Laboratory of B cell Neoplasia and Lymphoma Unit, Division of Molecular Oncology and Department of Onco-Hematology, Università Vita-Salute San Raffaele, Milan, Italy
| | - Evangelia Stalika
- Institute of Applied Biosciences, CERTH, Center for Research and Technology Hellas, Thessaloniki, Greece; Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece
| | - Maria Karypidou
- Institute of Applied Biosciences, CERTH, Center for Research and Technology Hellas, Thessaloniki, Greece; Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece
| | | | - Alba Navarro Lopez
- Insititut d'investigacions biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Giorgos Papadopoulos
- Information Technologies Institute, CERTH, Center for Research and Technology Hellas, Thessaloniki, Greece
| | - Jana Supikova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Patricia Groenen
- Department of Pathology, Radboud University, Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Myriam Boudjogra
- Biological Hematology Service, Hopital Pitie-Salpetriere, and UPMC Univ Paris 06, UMRS 1138, Paris, France
| | - Christer Sundstrom
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maurilio Ponzoni
- Pathology Unit and Unit of Lymphoid Malignancies, Istituto Scientifico San Raffaele, Milan, Italy
| | - Hana Skuhrova Francova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | - Sarka Pospisilova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | - Dimitris Tzovaras
- Information Technologies Institute, CERTH, Center for Research and Technology Hellas, Thessaloniki, Greece
| | - Paolo Ghia
- Laboratory of B cell Neoplasia and Lymphoma Unit, Division of Molecular Oncology and Department of Onco-Hematology, Università Vita-Salute San Raffaele, Milan, Italy
| | - Christiane Pott
- II. Medizinische Klinik und Poliklinik, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Frederic Davi
- Biological Hematology Service, Hopital Pitie-Salpetriere, and UPMC Univ Paris 06, UMRS 1138, Paris, France
| | - Elias Campo
- Insititut d'investigacions biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Richard Rosenquist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anastasia Hadzidimitriou
- Institute of Applied Biosciences, CERTH, Center for Research and Technology Hellas, Thessaloniki, Greece
| | | | - Kostas Stamatopoulos
- Institute of Applied Biosciences, CERTH, Center for Research and Technology Hellas, Thessaloniki, Greece; Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Antigen selection in B-cell lymphomas—Tracing the evidence. Semin Cancer Biol 2013; 23:399-409. [DOI: 10.1016/j.semcancer.2013.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 12/22/2022]
|
13
|
Abstract
Lymphomas are a very heterogeneous group of tumors of mature lymphoid cells with quite different morphology, genetics and clinical characteristics, which is also reflected in the numerous entities and sub-entities defined in the most recent WHO classification. Today, it is well-established that lymphomas can evolve due to both 'cell-intrinsic' factors (e.g. acquired genomic aberrations) and 'cell-extrinsic' factors (e.g. microenvironmental stimuli), although for most lymphoma subtypes the precise implicated mechanisms remain to be elucidated. In this thematic issue, a series of reviews have been collected focusing on key evidence for (i) direct or indirect links between antigens and lymphoma development; and, (ii) activated signaling pathways that play an essential role in tumor evolution and progression. Finally, strategies for the management of lymphomas developing due to viral and bacterial infection as well as novel promising therapies designed to hit specific cellular pathways (e.g. B-cell receptor inhibitors) will be summarized and discussed. Altogether, this issue will give the reader important insights into the current knowledge of the diverse mechanisms that come into play during lymphoma development as well as clues to future directions within this broad and intense research field.
Collapse
|
14
|
Darzentas N, Stamatopoulos K. Stereotyped B cell receptors in B cell leukemias and lymphomas. Methods Mol Biol 2013; 971:135-48. [PMID: 23296962 DOI: 10.1007/978-1-62703-269-8_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent research has revealed the existence of subsets (clusters) of patients with different types of B-cell lymphomas and leukemias with restricted, "stereotyped" immunoglobulin (IG) variable heavy complementarity-determining region 3 (VH CDR3) sequences within their B cell receptors (BcR), suggesting selection by common epitopes or classes of structurally similar epitopes. BcR stereotypy was initially described in chronic lymphocytic leukemia (CLL), where it constitutes a remarkably frequent feature of the IG repertoire, and subsequently identified in other malignancies, including mantle cell lymphoma and splenic marginal-zone lymphoma. Of note, at least in CLL, emerging evidence indicates that the grouping of cases into distinct clusters with stereotyped BcR is functionally and prognostically relevant. Hence, the reliable identification of BcR stereotypy may assist in the investigation of the nature of the selecting antigens and immune pathways leading to lymphoma development, and also potentially pave the way for tailored treatment strategies applicable to each major stereotyped subset. In this chapter, we provide an overview of BcR stereotypy in human B-cell malignancies, and outline previous and current methodological approaches used for its identification.
Collapse
Affiliation(s)
- Nikos Darzentas
- Medical Genomics Research Group, Molecular Medicine Program, CEITEC/Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | |
Collapse
|
15
|
Abstract
The majority of lymphomas originate from B cells at the germinal center stage or beyond. Preferential selection of B cell clones by a limited set of antigens has been suggested to drive lymphoma development. However, little is known about the specificity of the antibodies expressed by lymphoma cells, and the role of antibody-specificity in lymphomagenesis remains elusive. Here, we describe a strategy to characterize the antibody reactivity of human B cells. The approach allows the unbiased characterization of the human antibody repertoire on a single cell level through the generation of recombinant monoclonal antibodies from single primary human B cells of defined origin. This protocol offers a detailed description of the method starting from the flow cytometric isolation of single human B cells, to the RT-PCR-based amplification of the expressed Igh, Igκ, and Igλ chain genes, and Ig gene expression vector cloning for the in vitro production of monoclonal antibodies. The strategy may be used to obtain information on the clonal evolution of B cell lymphomas by single cell Ig gene sequencing and on the antibody reactivity of human lymphoma B cells.
Collapse
Affiliation(s)
- Hedda Wardemann
- Research Group Molecular Immunology, Max Planck Institute for Infection Biology, Berlin, Germany.
| | | |
Collapse
|
16
|
Navarro A, Clot G, Royo C, Jares P, Hadzidimitriou A, Agathangelidis A, Bikos V, Darzentas N, Papadaki T, Salaverria I, Pinyol M, Puig X, Palomero J, Vegliante MC, Amador V, Martinez-Trillos A, Stefancikova L, Wiestner A, Wilson W, Pott C, Calasanz MJ, Trim N, Erber W, Sander B, Ott G, Rosenwald A, Colomer D, Giné E, Siebert R, Lopez-Guillermo A, Stamatopoulos K, Beà S, Campo E. Molecular subsets of mantle cell lymphoma defined by the IGHV mutational status and SOX11 expression have distinct biologic and clinical features. Cancer Res 2012; 72:5307-16. [PMID: 22915760 DOI: 10.1158/0008-5472.can-12-1615] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mantle cell lymphoma (MCL) is a heterogeneous disease with most patients following an aggressive clinical course, whereas others having an indolent behavior. We conducted an integrative and multidisciplinary analysis of 177 MCL to determine whether the immunogenetic features of the clonotypic B-cell receptors (BcR) may identify different subsets of tumors. Truly unmutated (100% identity) IGHV genes were found in 24% cases, 40% were minimally/borderline mutated (99.9%-97%), 19% significantly mutated (96.9%-95%), and 17% hypermutated (<95%). Tumors with high or low mutational load used different IGHV genes, and their gene expression profiles were also different for several gene pathways. A gene set enrichment analysis showed that MCL with high and low IGHV mutations were enriched in memory and naive B-cell signatures, respectively. Furthermore, the highly mutated tumors had less genomic complexity, were preferentially SOX11-negative, and showed more frequent nonnodal disease. The best cut-off of germline identity of IGHV genes to predict survival was 97%. Patients with high and low mutational load had significant different outcome with 5-year overall survival (OS) of 59% and 40%, respectively (P = 0.004). Nodal presentation and SOX11 expression also predicted for poor OS. In a multivariate analysis, IGHV gene status and SOX11 expression were independent risk factors. In conclusion, these observations suggest the idea that MCL with mutated IGHV, SOX11-negativity, and nonnodal presentation correspond to a subtype of the disease with more indolent behavior.
Collapse
Affiliation(s)
- Alba Navarro
- Pathology and Hematology Departments, Hospital Clínic, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zullo K, Amengual JE, O'Connor OA, Scotto L. Murine models in mantle cell lymphoma. Best Pract Res Clin Haematol 2012; 25:153-63. [PMID: 22687451 DOI: 10.1016/j.beha.2012.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mantle cell lymphoma (MCL), an aggressive, heterogeneous B-cell lymphoma associated with a relatively short survival has been challenging to study in the laboratory due to the lack of in vitro and in vivo models that accurately recapitulate the disease. Advancement has been made in the characterization of MCL cell lines through the generation of the ATCC MCL bank, enabling their use in xenograft murine models. These models provide valuable but limited information for the preclinical evaluation and development of targeted therapies for MCL despite their deficiencies of a functioning immune system and correct micro-environment. Currently, there is only one double transgenic murine model known to develop spontaneous MCL. There is an urgency to develop innovative transgenic murine models that could be used to better predict therapeutic responses and precisely decipher mechanisms of action, to foster refinement of novel therapeutics for mantle cell lymphoma.
Collapse
Affiliation(s)
- Kelly Zullo
- Center for Lymphoid Malignancies, Department of Medicine, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY 10032, USA
| | | | | | | |
Collapse
|